
Colloidal	  clusters	  of	  anisotropic	  particles	  	  
	  
Bachelor/Master	  project	  
Contact:	  Dr.	  L.	  Rossi	  and	  Prof.	  P.	  Schall	  
Web:	  www.mycolloids.com	  
	  
The	  geometry	  of	  colloidal	  particles	  plays	  an	  important	  role	  in	  their	  assembly.	  This	  is	  
true	  when	  we	  look	  at	  many	  particles	  (or	  bulk)	  assemblies	  (PNAS,	  112,	  17,	  5286-‐5290,	  
2015),	  but	  also	  when	  we	  consider	  assemblies	  of	  just	  a	  few	  particles	  (Figure	  1).	  	  

In	  this	  project	  we	  want	  to	  study	  the	  influence	  of	  particle	  shape	  on	  the	  final	  geometry	  
of	  clusters	  containing	  small	  number	  of	  particles	  (	  <	  10).	  The	  student	  will	  first	  use	  the	  
available	  protocols	   for	   the	  preparation	  of	   clusters	  with	   spherical	   colloidal	   particles	  

(Figure	   1)	   and	  will	   apply	   later	   the	   same	   procedure	  
for	   the	   preparation	   of	   clusters	   from	   differently	  
shaped	   colloidal	   particles	   (cubes,	   ellipsoids,	   etc.).	  
Depending	   on	   the	   length	   of	   the	   research	   project	  
(Bachelor	   of	   Master)	   the	   student	   will	   spend	   some	  
time	   on	   the	   synthesis	   of	   the	   colloidal	   particles	   or,	  
alternatively,	   he/she	   will	   use	   particles	   that	   have	  
been	  previously	  prepared	  in	  the	  lab.	  	  Because	  using	  
colloidal	   particles	   with	   anisotropic	   shape	   will	  
introduce	  a	  higher	  degree	  of	  complexity,	  we	  expect	  
particle	   shape	   to	   affect	   the	   geometry	   of	   the	   final	  
clusters.	   The	   student	   will	   perform	   qualitative	   and	  
quantitative	   analysis	   of	   the	   clusters	   geometry	   and	  
compare	  the	  results	  with	  the	  data	  already	  available	  
for	  spheres.	  

These	   colloidal	   clusters	   have	   the	   potential	   to	   be	  
used	  	  	  in	  further	  experiments	  as	  building	  blocks	  for	  
the	   realization	   of	   even	   more	   complex	   colloidal	  

structures	  (novel	  materials).	  
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Figure	  1	  Clusters	  formed	  by	  spherical	  
particles.	  From	  MRS	  Bulletin,	  29(2),	  
91–95.	  

where r is the particle radius, ! is the oil–
water surface tension, and " is the bulk
solid/oil/water contact angle. For par-
ticles !1 #m in diameter, the binding
potential is thousands of times the thermal
energy. This effect can be exploited to con-
vert the surface of an emulsion droplet into
a 3D particle trap.24–26

Such droplets can consolidate as well as
confine the particles.27 Removing the liquid
from a droplet containing bound particles
generates compressive forces that draw the
particles together. Once the spheres touch
on the surface of the droplet, the receding
interface forms menisci between them, and
the resulting capillary forces collapse the
particles into a cluster. After all the oil has
evaporated, van der Waals attractions
freeze the structure. Surprisingly, this type
of compression leads to structures that are
unique and consistent for each value of n,
as shown in Figure 2. The preferred struc-
tures range from familiar polyhedra such
as tetrahedra, triangular dipyramids, and
octahedra to more unusual polyhedra that
have not been observed in either Lennard–
Jones clusters or other systems with attrac-
tive potentials. The symmetry varies errati-
cally with n, with two-, three-, four-, and
fivefold rotational symmetry all occurring
as a result of packing constraints alone.

Two general properties of the packing
sequence stand out. First, configurations
of up to n ! 11 can be reproduced by a
simple mathematical criterion: minimiza-
tion of the second moment,

(2)

of a set of hard spheres, where ri is the cen-
ter coordinate of the ith sphere and r0 is the
center of mass of the cluster.15 This type of
packing has not been observed before. For
n $ 12, the observed clusters are not
minimal-moment structures, but they
lower their second moment during the
packing process. Although we do not yet
understand why the second moment de-
fines the density in these systems, the cor-
relation may provide some clues about the
physics of the packing constraints.

The second general property of the se-
quence is the occurrence of deltahedra, or
polyhedra constructed from equilateral tri-
angles. There are eight possible regular
convex deltahedra,28 the first seven of
which correspond to the observed colloidal
clusters and the theoretical minimal-
moment packings for n ! 4 through 
n ! 10. The eighth deltahedron is the
icosahedron, but neither 12- nor 13-sphere
minimal-moment clusters are icosahedra.
In fact, the 13-sphere structure is the
weary icosahedron of Figure 1b, and the

M ! "n
i!1

#ri % r0#2,

13-sphere colloidal cluster we observe has
one sphere displaced from this arrange-
ment. The 12-sphere icosahedron appears
to be a metastable arrangement; it re-
arranges to the minimal-moment struc-
ture when the drying forces are large

enough. Thus, all eight deltahedra occur
under certain packing conditions.

Assembling Materials from 
Finite Packings

Any of the colloidal clusters can be frozen
in their optimal configurations and redis-
persed. In the surface templating method,
this is done by sintering the particles and
dissolving the substrate, a process that
yields about 105 clusters of any type, of
which !5% contain defects. In the emul-
sion trapping method, minimal-moment
clusters of different n can be separated by
centrifugation to yield 108–1010 identical,
colloidally stable clusters.

These clusters could let us tune the
microstructure of colloidal sphere pack-
ings. In the simplest scenario, we may dope
a bulk colloidal crystal with clusters made
from the same type of spheres. The surface
templating method is most appropriate for
such experiments, since it yields a small
amount of highly configurable clusters.
When a colloidal crystal dries, the particles
touch and form a close-packed fcc arrange-
ment, but the addition of non-close-packed
clusters would introduce specific defects.
For example, hexagonal clusters of six par-
ticles can be made by packing spheres into
circular micropatterned holes with posts
at the centers. Such packings are essentially
close-packed clusters that are missing a
central sphere; they would be an excellent
tool for introducing vacancies in photonic
crystals. Other types of defects are also
possible. The interstices in an fcc crystal
are coordinated by either tetrahedral or
octahedral arrangements of particles, while
minimal-moment clusters can contain in-
terior voids that are coordinated in many
other ways. Doping a dried crystal with
such clusters must therefore reduce both
the density and the average coordination
number. When the cluster has fivefold
symmetry, as does the seven-sphere
minimal-moment cluster or the 12-sphere
icosahedron, it may introduce a significant
amount of disorder into the bulk packing.

We could use these methods to control
the permeability in a macroporous material.
As shown in the 13-sphere finite packing
problem, 12-fold local coordination alone
does not guarantee maximum density; thus
it should be possible to control the two vari-
ables independently by adding the appro-
priate type and quantity of clusters. We may
even be able to create disorder by design—
using spheres and clusters to make bulk ag-
gregates with specific structure factors.29,30

The clusters may also allow us to con-
trol nucleation in colloidal crystals, and
thereby to improve the crystal quality for
optical materials. Yin and Xia showed that
adding a small amount of square (n ! 4)
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Figure 2. Scanning electron micrographs
of clusters formed by particles on the
surface of an evaporating droplet.
Schematic illustrations show the sphere
packings and polyhedra that minimize
the second moment of the mass
distribution.


