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2 Chapter 1. Introduction

1.1 General introduction

Topological insulators (TIs) represent an exotic state of quantum matter. TI crystals act
as a normal insulator with a gapped band structure in the interior, while the boundary
hosts peculiar metallic edge or surface states. The edge or surface states are immune to
back scattering by non-magnetic impurities and crystal defects due to the combination
of time reversal symmetry and spin orbit interaction. Besides, they exhibit spin-moment
locking and possess a π Berry phase. The discovery of TIs has initiated a surge of research
activities because of novel theoretical ideas and potential technological applications, such
as the topological magnetoelectric effect, Majorana fermions and fault-tolerant quantum
computation [1–3].

The story of the TIs can be traced back to the discovery of the integer quantum Hall
effect (IQHE) by von Klitzing et al. in 1980 [4]. Two-dimensional (2D) electrons
subjected to low temperatures and strong magnetic fields show a vanishing longitudinal
conductivity σxx together with a quantized Hall conductivity σxy = N e2

h
, where N is an

integer, e is the electron charge and h is Planck’s constant. The quantization of the Hall
conductivity obviously points to a quantum phenomenon. Interestingly, this state does
not show any symmetry breaking, which has been the conventional approach to classify
distinctive quantum phases of matter in condensed matter physics in the last century.
In 1982, Thouless, Kohmoto, Nightingale and den Nijs (TKNN) [5] showed that the
IQHE is not only a quantum mechanical phenomenon but also a topological one, which
facilitated the emergence of a completely different characterization of quantum phases
based on the concept of topology. Topology was first used by mathematicians to classify
different geometrical objects and is essentially the study of classes of objects invariant
under smooth deformations. For example, a coffee cup is topologically equivalent to a
doughnut but topologically distinct from an orange; a coffee cup can be smoothly reshaped
into a doughnut without closing or poking a hole, but this is not possible for the orange.
Analogously, the concept of topology can be extended to classify band structures in physics.
If Bloch Hamiltonians can be smoothly deformed into each other, they are topologically
equivalent and belong to the same topological class with a defined topological invariant.
In the case of a quantum Hall system, the TKNN invariant specifies its topology which
is characteristic of a 2D system with broken time reversal symmetry (TRS), in this case,
because of the magnetic field.

In 2005 and 2006, Kane and Mele [6] and Bernevig and Zhang [7] independently
proposed the idea of the quantum spin Hall (QSH) insulator, which is essentially two
copies of the quantum Hall system with two spin polarized edge states to preserve TRS. In
principle the QSH insulator can be realized in certain theoretical models with spin-orbit
coupling (SOC). Soon thereafter, Bernevig, Hughes and Zhang [8] theoretically predicted
that a QSH phase can be realized in CdTe/HgTe/CdTe quantum wells (QWs). In 2007
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König et al. verified this prediction with the experiment observation that Gxx is quantized
to 2e2/h (the conductance of a pair of edge channels) in zero magnetic field [9]. In terms
of topology, the QSH insulator is topologically different from a QH system and the former
is characterized by the Z2 topological invariant ν, which can take the value 0 or 1 [10].
This value classifies the topological character of systems: ν = 0 means that the system is
topologically trivial, whereas ν = 1 means that the system is topologically nontrivial and
has topologically protected edge states (resulting from SOC rather than from a magnetic
field). For the QSH insulator, ν takes the value of 1. A QSH insulator is called a 2D
topological insulator.

Before the experimental verification of 2D topological insulators, theorists general-
ized the topological classification to 3D systems, where four Z2 topological invariants
(ν0, ν1, ν2, ν3) are used to characterize the topology [11–13]. By layering 2D topologi-
cal insulators, a 3D version of a topological insulator can be constructed, similar to the
construction of the QSH insulator from QH states. However, this layered state is not
stable to disorder and is referred to as a weak topological insulator with index ν0 = 0.
The genuine 3D topological insulator, also called a strong topological insulator, has an
index value ν0 = 1. In 2007, Fu and Kane theoretically predicted that the Bi1−xSbx
alloy with x ranging from 0.07 to 0.22 should be a strong topological insulator [14]. This
prediction was experimentally confirmed in 2008 by Hsieh et al. by mapping the unusual
surface band structure of Bi0.9Sb0.1 (111) using angle-resolved photoemission spectroscopy
(ARPES) [15]. Given the importance of topological insulators as new quantum states
of matter, together with the rather complicated surface structure and small band gap of
Bi1−xSbx alloys, this motivated an extensive search for topological insulators with a simple
surface structure and large band gap. In 2009, Zhang et al. theoretically predicted via
first-principles electronic structure calculations that Bi2Se3, Bi2Te3, and Sb2Te3 are 3D
topological insulators, whereas Sb2Se3 is not [16]. Especially, for Bi2Se3 the calculation
predicted that its surface state is a nearly ideal single Dirac cone and that the bulk band gap
is around 0.3 eV, sufficiently large for applications [16]. Indeed, ARPES experiments con-
ducted by Xia et al. in 2009 confirmed the theoretical predictions [17]. Figure 1.1 shows
(a) the surface electronic band dispersion on the (111) surface of Bi2Se3 measured using
high-resolution ARPES and (b) the schematic of the spin texture based on spin-resolved
ARPES data. The spin-polarized surface states cross the bulk band gap and enclose a single
Dirac point centered at Γ̄. These theoretical predictions and experimental results opened
up the exciting field of topological insulators and generated a lot of research activity aimed
at addressing topological phases of matter.

The 3D topological insulators Bi2Se3, Bi2Te3 and Sb2Te3, which are called second
generation 3D topological insulators, became ideal model systems and have been inves-
tigated widely. These materials all crystallize in the rhombohedral structure with the
space group R3̄m. Here we take Bi2Se3 as an example, of which the crystal structure is
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Figure 1.1: (a) The surface electronic band dispersion on the (111) surface of Bi2Se3

measured by high-resolution ARPES with an incident photon energy of 22 eV along Γ̄− M̄ ,
showing a clear Dirac cone. (b) the schematic of the spin texture (blue arrows) based on
spin-resolved ARPES data. Figures taken from Refs. [2, 17] and [1, 18].

shown in Figure 1.2. It possesses a layered structure built up of quintuple layers (QLs)
consisting of a stack of Se – Bi – Se – Bi – Se atomic layers. The QL has a thickness
of about 1 nm, and acts as the very building block of the structure. Three QLs stack
sequently to give the unit cell with a thickness of ∼3 nm. The covalent bonding between
the atomic layers within one QL is much stronger than the van der Waals bonding between
two QLs, therefore, the crystals cleave at the interface of two QLs. In spite of the un-
ambiguous characterization of the topological surface states of these materials with the
help of surface-sensitive techniques, such as ARPES and Scanning-Tunneling Microscopy
(STM) [18–22], the transport properties of the surface states, which are fundamentally
interesting and useful for future device applications, turn out to be difficult to measure due
to the inherent large bulk conductivity in single crystals of these materials [23–25]. For
example, crystals nominally stoichiometric Bi2Te3 show a surface contribution of only
0.3% to the total transport response, according to measurements of Shubnikov-de Haas
(SdH) oscillations [24]. In order to achieve a truly bulk-insulating state in a TI material, it
is crucial to engineer a small residual bulk carrier density and/or mobility. A successful
approach in this respect has proven to be chemical substitution. Bi2Se3 is mostly n-type
due to Se vacancies and Bi2Te3 mainly behaves as p-type owing to anti-site defects between
Bi and Te. A logical solution is to combine both materials. Experiments showed that the
optimal combination is Bi2Te2Se (BTS) and its resistivity values exceed 1 Ωcm [26] and
the surface contribution amounts to 6% of the total transport [27, 28]. Ren et al. showed
that BTS can be further optimized by introducing Sb on the Bi positions together with
reducing the Te:Se ratio. The result of the optimization is shown in Figure 1.3. Fixing
the Sb content x and optimizing the Se content y for x yields the optimal composition
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Figure 1.2: (a) Crystal structure of Bi2Se3. t1,2,3 represent three primitive lattice vectors.
The quintuple layer (QL) with Se1 – Bi1 – Se2 – Bi1' – Se1' enclosed by the red square is
the main building block of the structure. The unit cell is comprised of a stack of 3 QLs. (b)
Top view along the z-direction. There are three different positions, A, B and C, in one QL
of the triangle lattice. (c) Side view of the QL structure. The stacking of the QLs are in
the – A(Se1) – B(Bi1) – C(Se2) – A(Bi1') – B(Se1') – manner along the z-direction. The
structure possesses inversion symmetry, that is, Se2 atoms act as inversion center and
invert the Se1(Bi1) layer to the Se1' (Bi1') layer. Figures taken from Ref. [16].

Bi1.5Sb0.5Te1.7Se1.3 [29]. The material shows high bulk resistivity values and surface
dominated transport, in which the surface contribution is as high as 70% [30].

Besides the widespread research on Bi-based materials, a great effort has been made
to discover new topological materials, such as selected half-Heusler compounds. Half-
Heusler compounds with chemical formula XYZ are derived from Heusler compounds
X2YZ named after Fritz Heusler who discovered the first Heusler compound Cu2MnAl in
1903 [32]. Half-Heusler compounds crystallize in a non-centrosymmetric cubic structure
with space group F 4̄3m. The crystal structure is shown in Figure 1.4(c). It can be derived
by combining an ionic rock salt-type structure (Figure 1.4(a), similar to that of NaCl)
formed by X and Z atoms and a covalent Zinc blende-type structure (Figure 1.4(b), similar
to that of HgTe) formed by Y and Z atoms. The X, Y and Z atoms occupy the 4b, 4c and
4a Wyckoff positions in the unit cell, respectively. Normally, X and Y are transition or
rare earth elements and Z is a heavy element. Half-Heusler compounds possess inherent
flexibility in the size of the unit cell and large variability in the composition, which allows
for tunable functions in the fields of spintronics, thermoelectricity, superconductivity
and magnetism [33–36]. The electronic properties of half-Heusler compounds can be
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Figure 1.3: (a) Composition phase diagram of the Bi2−xSbxTe3−ySey (BSTS) system. The
diagram was determined by fixing the Sb content x and optimizing the Se content y for
x. The red points denote the compositions where the compensation between n- and p-
type carriers is maximally achieved. The dashed line denotes the insulating composition
previously suggested by Teramoto et al. [31]. (b) Temperature dependence of the resistivity
ρxx for the series of BSTS samples at optimized ompositions. Figures taken from Ref. [29].

Figure 1.4: (a) Rock salt-type structure. (b) Zinc blende-type structure. (c) Half-Heusler
structure. The Wyckoff positions 4a, 4b, 4c are occupied by atoms Z (green), X (blue) and
Y (yellow) respectively. Figures taken from Ref. [38].

predicted by counting the number of valence electrons. For example, when the number of
valence electrons is 18 for the closed shell, half-Heuslers are usually non-magnetic and
semiconducting [37]. Furthermore, their band gaps can be tuned from 0 (e.g. LiMgN) to
about 4 eV (e.g. ScPtBi) by choosing the XYZ chemical composition [37].

Because it was realized that the band structure of some half-Heusler compounds is
analogous to that of CdTe or HgTe [34, 35], in which the topologically trivial or non-trivial
case can be judged by the band order of the s-like Γ6 state and the p-like Γ8 state [8], many
half-Heusler compounds were evaluated using first-principle band structure calculations
in order to search for new topological materials. Figure 1.5 shows the energy difference
between the Γ6 and Γ8 states, that is EΓ6 − EΓ8 , for many half-Heusler compounds as
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Figure 1.5: The band inversion strength for several half-Heusler compounds defined by
the energy difference EΓ6 − EΓ8 as a function of (a) the lattice constant (b) the average
nuclear charge 〈Z〉. When EΓ6 − EΓ8 > 0, there is no band inversion, indicating a trivial
band structure, whereas when EΓ6 − EΓ8 < 0, band inversion is present, indicating a
nontrivial band structure. Figures taken from Ref. [34].

a function of the lattice constant and the average nuclear charge. When EΓ6 − EΓ8 >

0, like in ScPtSb, the material is a trivial insulator, whereas when EΓ6 − EΓ8 < 0,
like in ScPtBi, the material is a TI candidate. The topological non-trivial nature was
theoretically proven through two approaches: (i) no topological phase transitions occur
when executing an adiabatic transformation between the half-Heuslers and a known Z2

topological insulator [35], and (ii) a topological phase transition takes place when driving
the half-Heuslers to a known trivial system [34]. However, in practice, most of these
half-Heusler compounds are semi-metals or zero-gap semiconductors in their native states.
To realize intrinsic insulating behavior, a combination of crystal strain and uniaxial strain
has been reported to open an energy gap [35, 39]. Recently, ARPES measurements on the
half-Heusler compounds LuPtBi and YPtBi revealed the presence of topological surface
states, with a Dirac point being found at a binding energy of ∼ 0.5 eV, which indicated the
topological nature of these systems [40]. Additional properties found in some potential half-
Heusler TI compounds are: magnetism in LnPtBi (Ln = Nd, Sm, Gd, Tb, Dy) [41, 42] and
LnPdBi (Ln = Er, Ho, Dy, Tb, Gd, Sm) [43–46], heavy fermion behavior in YbPtBi [47],
and superconductivity in LnPtBi (Ln = Y, La, Lu) [48–53] and LnPdBi (Ln = Tm, Er, Ho,
Dy, Sm, Lu, Y) [43–46,54,55]. We conclude that half-Heusler compounds offer a versatile
platform for the realization of interesting topological phenomena.

Based on the Bogoliubov-de Gennes Hamiltonian for the quasiparticles of a super-
conductor, which is analogous to the Bloch hamiltonian of a band insulator, research on
time-reversal-invariant topological insulators has been extended to time-reversal-invariant
topological superconductors (TSCs) [56, 57]. A TSC has a full superconducting gap in
the bulk and a gapless Andreev bound state on the edge or surface. The gapless state
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is predicted to host a Majorana zero mode, which has potential applications in quantum
computation [58]. As regards candidates for TSCs, a few promising compounds have
attracted much attention: half-Heusler compounds as mentioned above, doped 3D topo-
logical insulators, such as CuxBi2Se3 [59, 60] and SrxBi2Se3 [61], and doped crystalline
topological insulators, such as InxSn1−xTe [62, 63]. The experimental confirmation of
topological superconductiviy in these compounds is a prominent research topic in the field
of TIs.

1.2 Overview

In this thesis, an extensive investigation of the transport properties of the 3D topological
insulator Bi2−xSbxTe3−ySey (BSTS) is presented. Besides, the magnetic and superconduct-
ing properties of ErPdBi, a member of the half-Heusler TI family, are presented. Finally,
rotational symmetry breaking in the topological superconductor SrxBi2Se3 is reported, as
probed by upper-critical field experiments. The thesis comprises seven chapters. After this
introductory chapter, the remainder is organized as follows.

In Chapter 2, we start with the description of the preparation and characterization of
the BSTS, ErPdBi and SrxBi2Se3 crystals used in the investigation in the next chapters.
Then we present several cryogenic techniques that were employed for the transport and
magnetic property studies. Specifically, we describe the physical property measurement
system (PPMS Dynacool) and its measurement options, including the resistivity option,
horizontal rotator option, VSM option and ACMS II option.

In Chapter 3, we present a general theoretical description of topological insulators
involving the Z2 topological invariant, the existence of topologically protected edge or
surface states and the intriguing properties of the nontrivial edge or surface states. In order
to give a clear view of the bulk behavior of current topological insulator materials, the
Mott and Ioffe-Regel criteria for the metal-to-insulator transition as well as band bending
effects are described. Furthermore, we introduce two transport phenomena, the weak
anti-localization effect and the Shubnikov de Haas effect, both of which are frequently
employed to analyze the transport properties of topological insulators.

In Chapter 4, we systematically study the bulk-insulating properties of Bi2−xSbx
Te3−ySey single crystals with compositions around x = 0.5 and y = 1.3 via resistance and
Hall effect measurements. Next, we report resistance measurements on BSTS crystals with
different thicknesses and analyze the resistivity behavior with a parallel resistor model.
Chapter 4 is concluded with the magnetoconductance of an exfoliated BSTS nanoflake
with a thickness of 130 nm and the analysis of its transport properties in the framework of
the weak anti-localization effect.

In Chapter 5, we report a high-field magnetotransport study on selected low-carrier
crystals of the topological insulator Bi2−xSbxTe3−ySey. Monochromatic Shubnikov - de
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Haas oscillations (SdHOs) are observed at low temperatures. We present the temperature
dependence and angular dependence of the SdHOs. Then we calculate important transport
parameters of the surface states, including the carrier density, cyclotron mass and mobility,
in the framework of the Lifshitz-Kosevich theory. In the end, we acquire the Berry phase
by linearly extrapolating the Landau level plot and analyze the deviation of the Berry phase
from the ideal value π in terms of the non-ideal linear dispersion relation of the Dirac cone
of the Bi-based topological insulators and the Zeeman splitting in high magnetic field.

In Chapter 6, we present the discovery of superconductivity and magnetism in the non-
centrosymmetric half-Heusler compound ErPdBi. First, we show the results of electrical
transport, ac-susceptibility and dc-magnetization measurements that revealed supercon-
ductivity at Tc = 1.22 K. These data sets were used to extract the temperature dependence
of the upper critical field. After that, we report the magnetic transition observed at
TN = 1.06 K. We present the magnetic and superconducting phase diagram and dis-
cuss the coexistence of superconductivity and magnetic order. Besides, we present the
calculated electronic bulk band structure of ErPdBi that revealed its topological nature.

In Chapter 7, we report the discovery of rotational symmetry breaking in the topological
superconductor SrxBi2Se3 probed by upper-critical field experiments. We present a detailed
magnetotransport study of the angular variation of the upper critical field for a rotation of
the applied field in the trigonal basal plane. Surprisingly, a pronounced two-fold anisotropy
is observed, with Ba

c2 almost a factor 3 larger than Ba∗
c2 . This unusual anisotropy cannot

be explained by the anisotropic effective mass Ginzburg-Landau model or the effect of
flux flow induced by the Lorentz force. We propose two possibilities: unconventional
superconductivity with an odd-parity polarized triplet Cooper pair state (∆4-pairing)
recently proposed for rhombohedral topological superconductors, or a structural nature,
such as self-organized stripe ordering of Sr atoms.





Chapter 2

Experimental techniques

In this chapter, first the preparation and characterization of the Bi2−xSbxTe3−ySey (BSTS),
ErPdBi and SrxBi2Se3 crystals used in this thesis project are described. Then, the cryogenic
techniques used to investigate the transport and magnetic properties of these crystals are
presented, with an emphasis on the newly installed instrument PPMS Dynacool. Finally,
the resistivity option, horizontal rotator option, the VSM and ACMS II options of the
PPMS Dynacool are presented.
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2.1 Sample preparation

2.1.1 Bulk samples

The BSTS samples used in this thesis are all prepared at the Van der Waals-Zeeman
Institute (WZI) by Dr. Y.K. Huang and Dr. D. Wu. The BSTS crystals were grown
using the Bridgman method. The raw materials with a purity of at least 5N were weighed
according to their nominal compositions and sealed in an evacuated quartz tube. The tube
was placed vertically in the uniform temperature zone of a box furnace and heated up to
850 ◦C to melt the raw materials, and kept at this temperature for three days. Next the
tube was cooled down to 520 ◦C at a rate of 3 ◦C/h and kept at this temperature for another
three days to anneal the crystals that formed. In the final step, the tube was cooled down to
room temperature at a rate of 10 ◦C/h. A small size of the growth boules was chosen to
maximize the compositional homogeneity. The crystals were cleaved with Scotch tape to
obtain flat and shiny surfaces at both sides and cut into a rectangular shape using a scalpel
blade.

The ErPdBi single crystals were grown at the WZI by Dr. Y.K. Huang using a flux
technique. The starting materials were Er, Pd and Bi with a purity of 3N5, 4N and 5N,
respectively. First Er and Pd were arc-melted together in the ratio of 5 : 2, and Pd and Bi
in the ratio of 3 : 5. Then both alloys were melted together to form ErPdBi. After that,
the ErPdBi alloy was put in an alumina crucible with additional Bi which served as the
flux. The ratio of ErPdBi : Bi was 1 : 5. The alumina crucible was placed in a quartz
tube that was pumped to high vacuum and then filled with 0.3 bar high-purity argon gas
and sealed. The tube was heated in an oven to 1150 ◦C and kept at this temperature for
36 h. Finally the tube was slowly cooled down to 500 ◦C at a rate of 3 ◦C/h in order to
obtain the crystals. Samples were cut in a bar-shape by using a wire saw in a spark-erosion
machine (AGIEPLUS).

The SrxBi2Se3 single crystals with x = 0.10 and x = 0.15 were grown at the WZI by
Dr. Y.K. Huang by the Bridgman method. The raw materials Sr, Bi and Se with a purity
of 3N5, 5N and 5N, respectively, were weighed and mixed together in the nominal ratio.
The mixture was sealed in an evacuated quartz tube and heated up to 850 ◦C at a rate of
5 ◦C/h. Before cooling to 650 ◦C at the rate of 3 ◦C/h, the temperature was kept at 850 ◦C
for around 3 h. In the end, the temperature was lowered to room temperature at a rate of
20 ◦C/min. Samples were cut along the crystal axes a and a∗ after these were identified
using Laue back-scattering diffraction (see Section 2.2).

2.1.2 Hall bar

BSTS Hall bars were fabricated at the University of Twente by Dr. M. Snelder. Smooth
flakes were prepared through a mechanical exfoliation process from a bulk BSTS crystal,
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Figure 2.1: Image of a Hall bar made from a Bi1.46Sb0.54Te1.7Se1.3 nanoflake. The sam-
ple, electrodes and etched sites are displayed. The white region in the middle is the
Bi1.46Sb0.54Te1.7Se1.3 nanoflake. The blue background is the SiO2 substrate, the light blue
areas are the etched sites and grey regions are the electrodes. Figure taken from Ref. [64].

and were deposited on a silicon-on-insulator substrate. First, standard photolithography
and lift-off were used to define the Au electrodes on the flakes. Then, electron beam
lithography was applied to shape the flake in a Hall bar structure. In both procedures,
argon ion etching was employed and the sample was covered with either e-beam resist or
photo-resist to avoid surface damage or contamination. The image of a typical BSTS Hall
bar is shown in Figure 2.1.

2.2 Sample characterization

Sample characterization such as the crystal structure, composition and homogeneity is
essential before any further investigation of the physical properties. Figure 2.2 shows the
powder X-ray diffraction (XRD) pattern of Bi1.5Sb0.5Te1.7Se1.3, as well as the calculated
pattern of Bi2Se3 for comparison. Both patterns are essentially the same and all the peaks
are in good agreement with the rhombohedral crystal structure with space group R3̄m.
The shift of the diffraction peaks to lower 2θ values of Bi1.5Sb0.5Te1.7Se1.3 compared to
Bi2Se3 is attributed to an increase of the lattice parameters. To check the homogeneity
of the crystals, the electron probe micro analysis (EPMA) technique was used. Figure
2.3(a) shows the Sb content at 5 different positions on a Bi1.46Sb0.54Te1.7Se1.3 crystal. The
intensities of the 5 peaks are almost the same, showing no sign of significant stoichiometric
variation of the Sb content and thus this attests to a homogenous sample. In addition,
the Sb content of 6 BSTS samples with nominal Sb content varying from 0.42 to 0.58
was traced using EPMA, as shown in Figure 2.3(b). The peak intensity systematically
increases with increase of the nominal Sb content, indicating that the nominal weigh-in
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Figure 2.2: Powder X-ray diffraction pattern of Bi1.5Sb0.5Te1.7Se1.3 at room temperature
and the calculated pattern for Bi2Se3.

Figure 2.3: Electron Probe Micro Analysis: (a) spectrum of Sb content at 5 different
positions on a Bi1.46Sb0.54Te1.7Se1.3 sample; (b) spectrum of Sb content of 6 BSTS samples
with nominal Sb content varying from 0.42 to 0.58 (the lowest curve to the highest curve).

stoichiometry is well transferred to the final crystals.

The crystallographic structure of as-grown ErPdBi was verified and the sample purity
was determined by the powder XRD technique. The powder XRD pattern shown in
Figure 2.4(a) is taken on a powder obtained by grinding the as-grown ErPdBi crystal. The
experimental data (red line) are in good agreement with a simulation (blue line) for the
Half Heusler F 4̄3m space group with lattice parameter a = 6.5953 Å. Four tiny extra peaks
can be assigned to Bi inclusions with the total volume amount of less than 4%. The phase
homogeneity and the stoichiometry of the crystals were further investigated via EPMA and
scanning electron microscopy (SEM). EPMA revealed the main phase has the composition
ErPdBi. A SEM picture shown in Figure 2.4(b) displayed well defined sample regions with
a main phase (dark grey) and Bi flux precipitates (light grey). Crystals for transport and
magnetic measurements were cut-out in selected regions to avoid Bi inclusions. Moreover,
the single-crystalline nature was checked by means of back-scattering Laue diffraction,
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Figure 2.4: (a) Powder X-ray diffraction pattern of the ErPdBi crystal. (b) Scanning
electron microscope picture of the surface of the ErPdBi crystal. (c) Back-scattering Laue
diagram of ErPdBi. Left picture: measured. Right picture: simulated pattern(red dots)
superposed on the measured pattern.

which shows well defined spots in the Laue diffraction diagram, see Figure 2.4(c).

The crystallographic structure of as-grown SrxBi2Se3 was verified and the sample
purity was determined using powder XRD. Figure 2.5(a) shows the powder XRD patterns
for Sr0.10Bi2Se3 (blue line) and Sr0.15Bi2Se3 (red line), both recorded at room temperature.
The patterns are in excellent agreement with the calculated pattern for Bi2Se3 and the space
group R3̄m. The lattice parameters (a = 4.137 Å and c = 28.65 Å) are identical for both
compositions within the experimental resolution. The tiny extra peaks (black arrows) in
the diffraction pattern of Sr0.15Bi2Se3 point to the presence of a minority impurity phase.
In order to investigate whether Sr0.15Bi2Se3 undergoes a structural transition the powder
X-ray diffraction pattern was measured by Dr. Y. Matsushita at the National Institute
for Materials Science in Japan down to T = 10 K. No change in crystal structure was
observed (see Figure 2.5(b)). The lattice parameters a and c both show a small decrease
with decreasing temperature. The tiny extra peaks (black arrows) in the diffraction pattern
point to the presence of a minority impurity phase. To confirm their single-crystalline
nature and identify the crystal axes a and a∗, Laue back-scattering diffraction was carried
out on the SrxBi2Se3 crystals (see Figure 2.6). The Laue diagrams show well defined
spots and confirm the trigonal symmetry in the basal plane.
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Figure 2.5: (a) Powder X-ray diffraction pattern of Sr0.10Bi2Se3 (blue line) and Sr0.15Bi2Se3

(red line) at room temperature. The black line is the calculated pattern for Bi2Se3. (b)
Powder X-ray diffraction pattern of Sr0.15Bi2Se3 at 300 K (red line) and at 10 K (blue line).
The inset shows the temperature variation of the lattice parameters a and c.

Figure 2.6: Laue back-scattering pattern of Sr0.15Bi2Se3 with the incoming beam along
the c-axis. The diffraction pattern has trigonal symmetry. The a and a∗ axis are indicated.

2.3 Cryogenic techniques

In order to study the low temperature properties of the samples, several experimental
facilities at the WZI, including a home-made 4He bath cryostat, a MagLab Exa (Oxford
Instruments), a HelioxVL 3He refrigerator (Oxford Instruments) and a Physical Property
Measurement System (PPMS) Dynacool (Quantum Design) were used. In addition, low-
temperature high-field measurements were carried out at the High Field Magnet Lab
(HFML) in Nijmegen using a 4He bath cryostat. Since the PPMS Dynacool was newly
installed at the WZI in the summer of 2013, an overview of the system and its measurement
options is presented here. The other experimental set-ups will be presented very briefly
since detailed information can be found in Refs. [65–67].
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The home-made 4He bath cryostat in the WZI enables transport measurement in the
temperature range from 300 K to 4.2 K using liquid 4He as a cryogen.

The MagLab Exa is equipped with a Variable Temperature Insert (VTI) for measure-
ments in the temperature range 2-360 K. It is fitted with a 9 T superconducting magnet.

The HelioxVL 3He refrigerator is operated in a liquid 4He cryostat equipped with a
14 T superconducting magnet. The operation temperature runs from base temperature
0.25 K up to 300 K in zero field and from 0.25 K up to 100 K in field. To reach the base
temperature, 3He gas is first condensed into 3He pot with help of a pumped 4He stage, that
is a 1 K pot with the temperature around 1.5 K. Then the vapour pressure of the 3He liquid
is lowered using the built-in cryogenic adsorption pump. In this way, a base temperature
of 0.25 K can be reached.

The PPMS Dynacool allows for measurement temperatures in the range from 1.9 K
to 400 K without the need to supply liquid cryogens. Instead a two-stage pulse tube
cryocooler, as well as a gas flow regulation system is used. A schematic diagram of the
cryostat is displayed in Figure 2.7 [68]. The two-stage pulse tube cryocooler is located in
a cryogenic bucket (green outline) filled with helium gas. The first stage of the cryocooler
typically runs at around 45 K and cools the main radiation shield (black dashed line)
by conduction through a small gas gap. The other first stage components, including the
annulus radiation shield, the first stage of the cryopump, the electrical wiring heat loads
and the mechanical support heat loads coming from room temperature, are cooled by
solid contact to the main radiation shield. The second stage of the cryocooler typically
runs at around 4.2 K with the 4 K plate cooled by contact with around 150 cc of liquid
helium in the bottom of the bucket. The other second stage components, including the
superconducting magnet, the second stage of the cryopump, the helium gas and liquid
for sample chamber cooling, the electrical wiring heat loads and the mechanical support
heat loads coming from the first stage temperature, are cooled by solid contact to the 4 K
plate. The sample chamber (grey) sits inside the annulus tube and is cooled by helium flow.
The helium flow is driven by the pressure difference between the cooling annulus and the
bucket (maintained at a pressure of around 1 atmosphere by controlling the 4 K plate at
4.2 K). The circulation pump maintains the pressure of the cooling annulus at moderate
vacuum and causes helium from the bucket to flow up the cooling annulus to cool the
sample chamber. The exhausted helium from the circulation pump is returned to the bucket
and cooled by the cryocooler for reuse. Materials with a low thermal conductivity are
employed between cryostat components to maintain temperature differences and to avoid
heat leaks.

There are two cooling flow modes, the main flow and low temperature flow modes,
for temperature ranges 300–10 K and 10–1.9 K, respectively. In the main flow, the 4.2 K
helium gas taken from the bucket flows up the counter-flow heat exchanger (CFE), goes
through the mass flow controller and back down the CFE. Then, it travels through the



18 Chapter 2. Experimental techniques

Figure 2.7: A schematic diagram of the Dynacool cryostat. The two stage pulse tube
cryocooler sits in the bucket (in green) filled with helium gas. The first stage cooler
running at around 45 K has solid contact to the main shield (black dashed line), through
which the other first stage components are cooled. The liquid helium in the bottom of the
bucket cools the 4 K plate, through which the other second stage components such as the
superconducting magnet are cooled. The sample chamber (in grey) is embedded in the
annulus and the sample puck (in yellow) is located in the isothermal region at the bottom
of the sample chamber. Two lines connected to the bottom of the sample chamber represent
the two cooling flow modes – main flow (in dark cyan) and low temperature flow modes (in
blue)– of the sample chamber. Helium gas and helium liquid are shown in light cyan and
blue respectively and the direction of the helium flow is indicated by arrows. Figure taken
from Ref. [68].
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connecting tube and into the cooling annulus. The temperature is controlled by adjusting
the main flow rate and the annulus pressure through the mass flow controller. In the low
temperature flow, the 4.2 K liquid helium flows through the capillary flow impedance,
where the helium undergoes expansion because of the pressure difference between the
bucket (1 atmosphere) and the annulus (∼13 mbar). At the same time, some of it evaporates
resulting in a mixture of liquid and gas at about 1.7 K. This mixture goes through the
connecting tubes to the bottom of the cooling annulus. To provide a thermally uniform
region for the sample and experiment, high-conductivity copper is used at the sample tube
(in red) to minimize thermal gradients. For experiments, a robust 12-pin sample holder,
normally called sample puck (in yellow), is employed. It is placed at the bottom of the
isothermal region and is tightly connected to the block thermometer outside the sample
chamber that is used to record the temperature. The sample puck can be cooled down from
300 to 1.9 K in 40 minutes and the temperature stability is ± 0.02% for T > 20 K and ±
0.1% for T < 20 K.

The PPMS Dynacool allows for measurements in magnetic fields ranging from 9 to -9 T
with a 9 T switch-less superconducting solenoid magnet. The superconducting solenoid
resides in the cryostat vacuum space and is cooled by direct thermal contact to the 4 K
plate. The superconducting solenoid magnet is directly connected to the magnet controller
via the magnet leads. The magnet controller provides a maximum current of 60 A and
a typical current of 55 A is needed for a maximum field of 9 T. The magnetic field is
produced in a vertical direction (downwards) with a homogeneity of ± 0.01% in a range
of 3 cm at axis and centered at 4.05 cm above the sample puck. The resolution of the
magnetic field is 0.016 mT and the maximum sweep rate is 22 mT/s. There is a built-in
magnetic shield made up of steel. The stray field at a distance of 30 cm outside of the
cryostat cabinet is smaller than 0.5 mT.

At the High Field Magnet Laboratory at the Radboud University in Nijmegen, a Bitter
magnet with a maximum magnetic field of 33 T was employed to produce high magnetic
fields. The direction of the magnetic field is in the direction from top to bottom with the
homogeneity of 0.1% (10−3 in 1 cm diameter of spherical volume). The diameter of the
bore is 32 mm at room temperature. A bath cryostat is used to cool the sample insert from
300 to 1.7 K. Circulated cooling water is employed to prevent the magnet from overheating
during the experiments.

2.4 Measurement options of the PPMS Dynacool

2.4.1 Resistivity measurements

The resistivity measurements were conducted using a four-point configuration, which
eliminates the contribution of the leads and the voltage contacts allowing for an accurate



20 Chapter 2. Experimental techniques

Figure 2.8: PPMS sample pucks for (a) resistivity option and (b)(c) horizontal rotator
option for out-of-plane and in-plane sample rotation. (d) Horizontal rotator transfer case
with rotator platform circuit board. Figures taken from Ref. [69].

determination of low resistance values. In this configuration, two outer leads are used to
pass the current I through the sample and two inner leads are employed to measure the
potential drop V over the sample. The resistance R is calculated according to Ohm’s law
R = V/I and the resistivity ρ is calculated via the relation ρ = RA

L
, where A is the cross

section of the sample and L is the distance between the two voltage contacts.

In the PPMS Dynacool the resistivity option with a configurable resistance bridge
board is installed to perform resistivity measurements. Four channels are available on the
resistance bridge board and up to three samples can be mounted on the resistivity sample
puck (see Figure 2.8) to make the resistivity measurements. The measurements do not take
place simultaneously, but begin from the lowest channel when more than one channel is
activated. Once a channel is active, the current is running through the sample regardless of
whether a measurement is performed or not. The excitation current, voltage and power can
be set in the range of ± 0.01–5000 µA, 1–95 mV and 0.001–1000 µW, respectively. The
measurement errors are within 1% when the measured resistance R < 4 MΩ, and increase
considerably when R > 4 MΩ. The AC drive mode for the excitation current in the form
of a square-wave is made on the resistance bridge board and is synchronized to the line
frequency of 50 Hz with the measurement rate of 8.33 Hz. In the resistivity option, the
sample temperature and the control temperature are both obtained from the value of the
block thermometer. The noise in the sample temperature is around ±0.01 K. To install and
remove the sample puck, a special tool named the puck insertion tool is used. Detailed
instructions are given in the PPMS Dynacool User’s Manual [68].

The resistivity option can be combined with the so-called horizontal rotator option.
This allows for the rotation of the sample platform with respect to the magnetic field.
Figure 2.8 (b)(c)(d) show the sample pucks for out-of-plane and in-plane sample rotation,
and the transfer case with rotator platform circuit board of the horizontal rotator option,
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respectively. In this instrument, the horizontal rotator with serial number HRE527 can be
installed. The rotation is in the range from -10◦ to 370◦, where 0◦ and 360◦ denote the
face-up orientation. The rotator can be operated manually or automatically with a rotator
motor. It is of great importance that the position reported in the software matches the actual
orientation of the sample in the measurements. Therefore, proper position calibration
is necessary before the real measurement starts. This calibration procedure is presented
in the PPMS horizontal rotator option user’s manual. Another issue that should be kept
in mind about the position is the backlash of the rotator. This is caused by the effect
of the temperature dependence of the mesh on the rotator gears and the torsional spring
which allows for alternate sticking and slipping behaviour while it is being unwound. The
backlashes at 300 K, 150 K and 10 K are roughly around 2◦, 8◦, 6◦, respectively. To reduce
backlash and conduct good measurements, the rotation should always proceed in the same
direction, that is, in the direction of decreasing angles. For temperature control, the rotator
is equipped with a custom thermometer that serves to measure the sample temperature and
the control temperature. Two other aspects that should be considered are: (i) the speed of
the temperature control is slower resulting from the thermal load of the horizontal rotator,
and the noise of the sample temperature is around ±0.1 K with an oscillation-like form;
(ii) channel 1 of the sample puck is used for the custom thermometer and channel 2 and 3
can be used to mount samples, however, the signal of channel 2 and 3 on the sample puck
are transferred to channel 1 and 2 of the user bridge board during measurements. Given
the delicate parts of the horizontal rotator, a rotator support tool is provided to help avoid
denting and bending the rotator insert and a sample removal tool is used to avoid damaging
gears and wiring.

2.4.2 DC magnetization and AC susceptibility measurements

DC magnetization measurements were performed with the Vibrating Sample Magnetometer
(VSM) option of the PPMS Dynacool. The basic principle of operation is as follows: first,
magnetize the sample by placing it in a uniform magnetic field, and then move the sample
sinusoidally by means of the VSM linear motor in and out of a pickup coil, which will
induce a voltage. The induced voltage is proportional to the DC magnetic moment of the
sample and is measured with help of a lock-in amplifier using the position signal from the
VSM linear motor as a reference signal.

Figure 2.9 shows the typical sample holders for the VSM measurements. The quartz
paddle with a diameter of 4 mm (Figure 2.9(a)) is designed for the lowest magnetic
moment samples. A brass trough-shaped sample holder that fits samples up to a diameter
of 4 mm (Figure 2.9(b)(c)) provides versatility. Considering the high accelerations during
VSM measurements, the sample should be firmly mounted on the sample holder. There are
normally two methods to secure the sample to the holder: (i) with help of glue, such as GE
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Figure 2.9: VSM sample holders with samples mounted: (a) quartz paddle and (b)(c)
brass trough for solid and powder samples. (d) VSM sample rod made from carbon fiber.
Figures taken from Ref. [70].

varnish used at low temperature, Duco cement used at room temperature with materials
of similar thermal properties, and Superglue used at room temperature with a fast drying
speed, (ii) with the help of tape, such as kapton tape and thin teflon tape. As regards
powder samples, an injection molded plastic container (shown in Figure 2.9(c)) serves as
the holder to keep the powder in place. Since the sample position is important for the VSM
measurements, a sample-mounting station is provided to precisely locate the sample on the
sample holder.

The VSM linear motor makes the sample vibrate at a rate of 40 Hz with the peak-to-
peak amplitude of 1-4 mm. To hold the sample rod which is used to suspend the sample
holder (see Figure 2.9(d)) in place, a magnetic-locking mechanism is applied by using
small magnets at the top of the sample rod. It is worth noting that the sample will be
exposed to vertical magnetic fields of up to approximately 200 Gauss when passing through
the top of VSM linear motor transport. The pickup coilset (shown in Figure 2.10(a)) has
the serial number 495, which is used to identify the coil calibration information. The center
of the coil is 40.1 mm above the puck surface, which is in the high homogeneity field
region of the external magnet. The bore diameter is 6.33 mm, which is the sample width
limitation. A thermometer for monitoring the sample temperature is mounted near the
pickup coils. The measurement temperature, sample temperature and control temperature
are all given by the value of the coil thermometer. The detection system has a sensitivity
of 10−9 Am2 at a data rate of 1 Hz and is not significantly affected by large magnetic



2.4. Measurement options of the PPMS Dynacool 23

Figure 2.10: (a) Schematic diagram of the VSM standard coil set puck, Bore diameter (B)
= 6.33 mm; coil thickness (T) = 1.78 mm; coil spacing (S) = 7.11 mm; coil inner diameter
(I.D.) = 7.73 mm; coil outer diameter (O.D.) = 13.7 mm; height above puck surface (H) =
40.1 mm. (b)(c) schematic diagrams of the ACMS II standard coil set puck, I.D. = 8.1 mm;
T = 14.0 mm; S = 5.9 mm; O.D. = 12.4 mm; H = 40.1 mm. Figure taken from Ref. [70,71].

fields. To obtain VSM measurement results of high quality, the sample size and shape as
well as sample position should be taken into account. The sample diameter should be less
than 4 mm to avoid rubbing against the coil set and the sample length should be less than
5 mm to maintain the accuracy of the point source dipole approximation in evaluating the
magnetic moment. It is recommended to mount the sample on the sample holder 35 mm
above the bottom of the sample holder considering the height of the coilset of 40.1 mm and
a maximum VSM vibration amplitude of 4 mm. Periodic touchdown operations, which
adjust for changes in the sample position, should be performed to keep the center position
stable within about 0.1 mm for accurate VSM measurements. Particularly, when sweeping
the temperature from 300 K to 2 K, there is no significant change in the length of the
sample rod because of the very low thermal expansion coefficient of the carbon fiber, while
the stainless steel of the sample chamber will contract in length by ∼ 2 mm. Even when
the temperature is stabilized, the sample position is still moving within 4 hours. Therefore,
it is recommended to make a touch down operation every 10 K when sweeping temperature
and touch down every 10 minutes when at stable temperature.

AC susceptibility measurements were conducted via the AC Measurement System
(ACMS II) option of PPMS Dynacool. The basic principle of operation is as follows:
first, an AC drive magnetic field is generated by a small AC current in the drive coil,
which will result in a time-changing magnetization in the sample; then the time-dependent
magnetization will lead to a change in flux, which will induce a voltage in the pickup
coils. The induced voltage is proportional to the magnetization and is detected with lock-in
amplifiers.

In fact, the ACMS II option can also be used to measure DC magnetization. The
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ACMS II option is similar to the VSM option. The main difference is the coilset puck and
accuracy. ACMS II option has a sensitivity of ∼ 10−11 Am2 and is two orders higher than
that of VSM option. The serial number of the coilset puck of the ACMS II option is wf026
and schematic diagrams of the coilset are shown in Figure 2.10(b)(c). The sample bore
diameter is 8.1 mm and the sample diameter limitation is extended to 6 mm. The height of
the pickup coil is 14 mm and the sample length should be less than 6 mm. Since the center
for the bottom pickup coil is 25 mm above the puck surface, the sample should be mounted
on the sample holder near 25 mm above the bottom of the sample holder. The frequency of
the AC drive current of the AC drive coil ranges from 10 Hz to 10 KHz. The maximum
drive field that can be generated is 17 Oe. However, considering the Joule heating caused
by the eddy currents in the copper portion of the sample chamber because of the AC drive
field, the applied AC drive field should be limited at temperatures below 25 K to avoid
warming.



Chapter 3

Theoretical aspects

In this chapter the theoretical background of my PhD research is presented. First, a
general description of topological insulators is given starting from symmetry arguments
(Z2 topological invariant) towards band inversion and electronic structure calculations.
Then, as regards to transport measurements, the simple criteria given by Mott and Ioffe-
Regel are provided to judge the intrinsic insulating behavior of TIs. Also band bending
effects which affect the transport properties are presented. Next, the focus is turned to
two transport phenomena: the weak anti-localization effect and Shubnikov de Haas effect.
Finally, a short introduction to time-reversal invariant topological superconductivity is
presented.
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Figure 3.1: (a) The energy bands of a system with time reversal symmetry come in pairs,
with the state +k and the state -k having the same energy. When the spin-orbit coupling
lifts the degeneracy of the bands, the degeneracy remains at the time reversal invariant
points where +k becomes equivalent to -k due to the periodicity of the Brillouin Zone.
There are two time reversal invariant points, k = 0 and k = π. At the right: schematic
picture of half of the Brillouin zone displaying the edge states between two time reversal
invariant points,Γa and Γb, for (b) topologically trivial and (c) topologically nontrivial
cases. Figures were taken from Ref. [1, 72].

3.1 Topological insulators

Topological insulators preserve time reversal symmetry (TRS). For particles with spin
1/2 under TRS, a constraint known as Kramers’ theorem (that is, all eigenstates of a
Hamiltonian with TRS are at least twofold degenerate) will take effect, because the time
reversal operator Θ which is given by Θ = exp(iπSy)K has the important property
Θ2 = −1. Here Sy is the spin operator and K is complex conjugation. This can be proved
by applying Θ on a non-degenerate state | ψ >. Then we have Θ | ψ >= c | ψ > with a
constant c. Applying Θ on both sides of the equation we obtain Θ2 | ψ >= | c |2 | ψ >.
This contradicts Θ2 = −1, because | c |2 6= −1. When there is no spin-orbit coupling
(SOC), there is degeneracy between spin up and spin down. When the SOC is present, the
degeneracy will be lifted except for the time reversal invariant points where +k becomes
equivalent to -k due to the periodicity of the Brillouin Zone (BZ). This is because when
the Hamiltonian preserves TRS, H(k) satisfies H(−k) = ΘH(k)Θ−1, which means the
state +k and the state -k are at the same energy (see Figure 3.1(a)).

Topological insulators can be distinguished from conventional insulators by the Z2

topology, characterized by the Z2 topological invariant ν. In 2D systems a single Z2

topological invariant is enough to characterize the time reversal invariant band structure.
In 3D systems four Z2 topological invariants are needed. Several approaches are used
to evaluate the Z2 topological invariants. One of them, proposed by Fu and Kane [14],
is commonly used because of its simplicity when a material system possesses inversion
symmetry, which is the case for BSTS. The Z2 topological invariant ν can be determined
by the following formulas:

(−1)ν =
∏
i

δi (3.1)
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δi =
N∏
m=1

ξ2m(Γi) (3.2)

where ξ2m(Γi) = ±1 and represents the parity eigenvalue of the 2mth occupied energy
band at the ith time reversal invariant k-point, Γi. The product in Equation 3.1 runs over
all four and eight time reversal invariant k-points for 2D and 3D systems, respectively. The
product in Equation 3.2 runs over all 2N occupied energy bands for every time reversal
invariant k-point. This approach has been carried out successfully by Zhang et al. [16] to
predict that the layered, stoichiometric crystals Sb2Te3, Bi2Te3 and Bi2Se3 are topological
insulators, while Sb2Se3 is not. Figure 3.2 (a) shows the parity eigenvalues of the highest
fourteen occupied bands and the lowest unoccupied band at the time reversal invariant
point Γ for these four crystals. When comparing the parities of the occupied bands of the
trivial material Sb2Se3 to those of the nontrivial ones, there is an exchange of the parity
between the highest occupied band and the lowest unoccupied band for the nontrivial
materials. This is due to strong spin orbit coupling which leads to so-called band inversion.
Let us take Bi2Se3 as an example. Figure 3.2 (b) shows the energy diagram near the
Fermi energy of Bi2Se3, transformed from the atomic energy levels of Bi (6s26p3) and Se
(4s24p4). Only the p orbitals are considered since the closed s shell is not near the Fermi
energy. Three effects should be taken into account. First, the chemical bonding between
Bi and Se hybridizes the energy states and pushes up the Bi states, while pushing down the
Se states. Then, the crystal field decreases the degeneracy of the Bi and Se states |Px,y,z >.
The |Px,y,z > states are split into |Px,y > and |Pz > states, where the |Pz > states end up
being close to the Fermi energy. Finally, the effect of SOC leads to repulsion between the
|Pz, ↑ (↓) > and |Px+iy ↑ (↓) >, |Px−iy ↑ (↓) > states. As a result, the |P1z, ↑ (↓) > state
originating from Bi is pushed down and the |P2z, ↑ (↓) > originating from Se is pushed up.
When the SOC is strong enough, the two states |P1z, ↑ (↓) > and |P2z, ↑ (↓) >, closest
to Fermi energy, become inverted. As these two states have opposite parity, the parity of
the occupied valence bands is altered as a whole, which leads to the transformation from a
trivial insulator to a topologically nontrivial insulator.

The physical consequence of a nontrivial Z2 topological invariant (ν = 1) is the ap-
pearance of topologically protected edge or surface states. The topological invariant ν
determines whether an even number (ν = 0) or odd number (ν = 1) of surface bands
intersect the Fermi level inside the bulk gap [14]. Figure 3.1(b) and 3.1(c) schematically
show the topologically trivial and nontrivial cases. In the figure, half of the BZ is shown
with two time reversal invariant k-points labeled Γa and Γb. The bulk conduction and
valance bands are displayed as shaded regions and are separated by an energy gap. There
are two possible ways to connect the edge or surface states at the time reversal invariant
points (see Figure 3.1 (b) and (c)). In Figure 3.1 (b) the Fermi level intersects the bands
an even number of times. In this case, it is possible that the edge states are pulled out of
the gap by varying the surface Hamiltonian. In contrast, in Figure 3.1 (c) there is an odd
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Figure 3.2: (a) The parity eigenvalues of the highest fourteen occupied bands and the
lowest unoccupied band at the time reversal invariant point Γ for Sb2Se3, Sb2Te3, Bi2Te3

and Bi2Se3 crystals. The product of the parity eigenvalue for the fourteen occupied bands
is displayed in brackets. (b) Energy diagram displaying the atomic p orbital of Bi and Se
transforming to conduction and valence bands of Bi2Se3 at the Γ point under the effects of
chemical bonding (I), crystal field (II) and spin orbit coupling (III). The spin orbit coupling
leads to band inversion near the Fermi energy (dashed line). Figures taken from Ref. [16].

number of bands that intersects the Fermi level. In this case, no matter how the surface
Hamiltonian varies, the edge state is guaranteed to cross any Fermi level inside the bulk
gap.

The spin of the topologically protected edge or surface states are locked to their
momentum and this makes them robust to disorder and immune to backscattering. Take
the edge states of the QSH system as an example. Figure 3.3 shows that when an electron
with spin 1/2 scatters from a nonmagnetic impurity, there are two possible time reversal
paths, clockwise (blue curve) and anticlockwise (red curve). As a result, the spin rotates
by an angle of π and -π, respectively, and the phase difference between these two paths is
a 2π rotation of spin. As we know, spin 1/2 systems have an antisymmetric wave function:
ψ(θ) = −ψ(θ + 2π). This implies that these two paths will interfere destructively and
the quantum mechanical probability of the backscattering dramatically decreases. In
other words, the backscattering is heavily suppressed and there is almost no dissipation.
However, if the impurity carries a magnetic moment, the TRS will be broken in the system
and the interference between the two paths is no longer destructive, which can then lead to
dissipation.

The topologically protected edge or surface states possess another prominent property,
a π Berry phase. The Berry phase is the phase picked up by an external parameter of a
quantum system after it adiabatically makes a closed path in parameter space [74]. Consider
a quantum system described by a time dependent Hamiltonian H which is specified by the
parameter R(t). Assuming the system starts out at the n-th eigenstate |n,R(t) >, then the
parameter R adiabatically goes through a closed path C, and the Berry phase γn acquired
during this process can be expressed as
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Figure 3.3: A scheme of a backscattering by a nonmagnetic impurity for a quantum spin
Hall edge state. There are two possible time reversal paths the electrons are scattered:
one, going clockwise along the blue curve with spin rotating by π; the other, going
anticlockwise along the red curve with spin rotating by -π. These two paths lead to a
destructive interference and the backscattering is suppressed. Figures taken from Ref. [73].

γn = i
∮
c

< n,R|∇R|n,R > dR. (3.3)

As mentioned above, in topological insulators, the topologically protected edge or surface
states have the property of spin-momentum locking. When an electron with spin locked to
its momentum moves in a closed path in momentum space, it picks up a π Berry phase [75].

The existence of topologically protected edge or surface states is an important prop-
erty of topological insulators. These states can be obtained by analytically solving the
Hamiltonian of the explicit model of a material with open boundary conditions [76–79],
such as has been done in models for HgTe-type compounds [8], Bi2Se3-type crystals [16],
the perovskite oxide BaBiO3 [80] and the KHgSb-type materials [81]. As an example
we consider the Bernevig-Hughes-Zhang (BHZ) model for HgTe [8], which led to the
experimental discovery of the first 2D TI material (CdTe/HgTe/CdTe quantum wells). This
model is derived from k · p perturbation theory of bulk materials with a Taylor expansion
up to the quadratic term. The effective Hamiltonian is written as follows:

H = ε(k)I4×4 +

∣∣∣∣∣∣∣∣∣∣
M(k) Ak+ 0 0

Ak− −M(k) 0 0

0 0 M(k) −Ak−
0 0 −Ak+ −M(k)

∣∣∣∣∣∣∣∣∣∣
(3.4)

with ε(k) = C −Dk2, M(k) = M0 + Bk2 and k± = kx ± iky. I4×4 is the 4×4 unitary
matrix. A, B, C, D, M are material parameters that can be determined by fitting the
energy spectrum of the effective Hamiltonian to that of the ab initio calculation [16]. By
diagonalizing the effective Hamiltonian Equation 3.4 with open boundary conditions, the
topological edge states can be obtained on the condition that M/B > 0 which means an
inverted band gap regime. The topological edge states are spin polarized.
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3.2 Transport studies of the 3D topological

insulator bulk

Even though the 3D topological insulator Bi2Se3 has an energy gap of about 0.2-0.3 eV [82,
83] in bulk, single crystalline from it shows metallic behavior in transport measurements.
The conductivity is dominated by the bulk due to the presence of defects and impurities,
which hampers a proper measurement of the transport properties of the topological surface
states. Therefore, it is important to first understand the bulk properties of 3D topological
insulators from the view point of their bulk carrier density. An interesting approach in
this respect has recently been presented by Brahlek et al. [84]. Since the bulk Fermi
energy EF = ~2/(2m∗)(3π2NBD)2/3 under the assumption of isotropic Fermi surface and
absolute zero temperature, where m∗ is the effective mass and NBD is the bulk carrier
density, the Fermi energy EF can be moved into the bulk conduction or valence bands
whenNBD reaches a certain value, which results in a metallic bulk. Take Bi2Se3, which has
an effective mass m∗ of about 0.15me (me is the electron mass) [85], as an example. When
the bulk carrier density is below 1017 /cm3, EF is pinned at the bottom of the conduction
band [84]. To judge whether a metal-to-insulator transition (MIT) occurs with reducing
carrier densities and EF is situated in the band gap, there are two criteria, that of Mott and
Ioffe-Regel.

The Mott criterion states the critical point for the MIT, that is aBN
1/3
BD ≈ 0.25 [86].

Here aB is the effective Bohr radius, calculated using aB = ε(me/m
∗)a0 in which ε

denotes the dielectric constant and a0 = 0.5 Å being the free space Bohr radius. The
idea is simple: when the carrier density decreases, the average distance between the
carriers increases and becomes larger than the effective Bohr radius, which results in
the localization of the electrons bound to the atoms and no free movement of electrons
between neighboring atoms. As a consequence, the metal changes to an insulator. This
simple criterion has been applied to many systems as reported in Ref. [87], including doped
semiconductors, high-Tc superconductors, metal-ammonia solutions and metal-noble gas
alloys, to numerically predict for a MIT [88–92]. For the case of Bi2Se3,NBD is calculated
to be around 3× 1014 cm−3 with ε ≈ 110 and m∗ ≈ 0.15me [85]. This value is two
orders of magnitude smaller than the lowest density achieved so far for Bi2Se3 (around
1016 cm−3 [85]). Thus from the view point of the Mott criterion, the current topological
insulators, such as Bi2Se3, are not intrinsic insulators.

The Ioffe-Regel criterion describes that when the mean free path ` of the electrons
in a material is smaller than its Fermi wave vector kF , that is, kF ` < 1, the electrons
become trapped and the material goes through a metal-to-insulator transition [93]. For
an isotropic 3D Fermi surface, kF can be obtained by the formula kF = (3π2NBD)1/3

and ` can be calculated through the electron mobility µ = e`/~kF , which results in ` =

(~µ/e)(3π2NBD)1/3. Here e is the electron charge. Therefore, when µ < (e/~)(3π2NBD)−2/3,
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the material will be in a weakly insulating state even through the carrier density is larger
than that calculated from the Mott criterion. The resistance behavior of this weakly insulat-
ing state (in 3D) can be described by 3D variable range hopping with R ∼ exp(T/T0)1/4,
where R is the resistance of the material, T is the temperature and T0 is a constant de-
pending on the density of states at the Fermi level [94]. Since this weakly insulating state
is only truly insulating at the temperature around zero and stays conducting at a finite
temperature, the materials at this state are generally called bad metals. Figure 3.4 shows
the Mott and Ioffe-Regel criteria for the metal-to-insulator transition and the positions
of well-known Bi-based topological insulators depending on their carrier densities NBD

and electron mobilities µ. The vertical line denotes the critical value of the bulk carrier
density NBD = 3 × 1014 cm−3 calculated based on the Mott criterion. The left region
denotes truly insulating states in the Mott sense. The diagonal lines are obtained from the
Ioffe-Regel criterion kF ` ∼ 0.3− 3. The region above the Ioffe-Regel criterion kF ` ∼ 3

with high carrier density and high mobility belongs to good metals and the region below the
Ioffe-Regel criterion kF ` ∼ 0.3 having high carrier density but low mobility displays bad
metals. Brahlek et al. [84] compiled a plot of the transport data of Bi-based topological
insulators including Bi2Se3, Bi2Te3 , Bi2Te2Se and Bi2−xSbxTe3−ySey which are obtained
from Refs. [25, 27–29, 95–103]. Bi2Se3, Bi2Te3 are in the good metal region and Bi2Te2Se
and Bi2−xSbxTe3−ySey are in the bad metal region at the cost of low mobility, which
challenges the observation of the Shubnikov-de Haas effect.

In 3D topological insulators, band-bending phenomena commonly occur due to the
difference between the bulk and the surface Fermi levels. This results in the charge transfer
between bulk and surface to balance the Fermi level in the material. Depending on the
surface carrier density, there are three band-bending directions: flat band, bent upward
and bent downward. Let us take Bi2Se3 as an example. The calculations are taken from
Ref. [84] for the purpose of demonstration. First consider the flat band condition, that is,
the Fermi levels of both the bulk and the surface are at the same position, which according
to the Mott criterion will be at the bottom of the conduction band. Given that the Fermi
level EF of the surface is around 210 meV above the Dirac point [104] and the Fermi
velocity υF ≈ 4 × 105 m/s, the Fermi wave vector kF is calculated to be around 0.08
Å−1 using the formula EF = ~kFυF for the Dirac linear dispersion. Then the carrier
density of one surface state nSS can be calculated from the formula nSS = k2

F/4π to
be around 5 × 1012 cm−2. If nSS > 5 × 1012 cm−2, the conduction band needs to bend
downward and the carriers are transferred from surface to bulk, resulting in a bulk carrier
accumulation at the surface. If nSS < 5× 1012 cm−2, the conduction band needs to bend
upward and the carriers transfer from bulk to surface, resulting in a bulk carrier depletion
at the surface. These three conditions are schematically shown in Figure 3.5(a)(b)(c)
respectively. In the literature, due to the initial nSS , some of Bi2Se3 crystals [100] and
Bi2Se3 thin films [105] show upward band bending while some of them [102, 104] show
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Figure 3.4: A diagram of the Mott and Ioffe-Regel criteria for the metal-to-insulator
transition. The vertical line denotes the critical value of the bulk carrier density NBD =
3 × 1014 cm−3 calculated based on the Mott criterion. The diagonal lines are obtained
from the Ioffe-Regel criterion kF ` ∼ 0.3 − 3. The well-known Bi-based topological
insulators, including Bi2Se3, Bi2Te3, Bi2Te2Se1 and Bi2−xSbxTe3−ySey are put into the
diagram depending on their carrier densities NBD and electron mobilities µ. Data are
obtained from Refs. [25, 27–29, 95–103]. Figure taken from Ref. [84].

downward band bending. In addition, the presence of the adsorbates at the surface could
lead to downward band-bending of the bulk bands [84, 106]. Upward band bending is
favourable for the observation of Shubnikov-de Haas Oscillations of the topological surface
states [84].

3.3 Weak (anti-)localization

Weak anti-localization (WAL) and weak localization (WL) are quantum interference
phenomena observed in transport measurements on disordered electron systems. WAL and
WL give a correction to the conductivity of a material by enhancing or suppressing the
conductivity with decreasing the temperature and show a negative or positive magneto-
conductivity with a sharp change in small magnetic fields. In the following paragraphs we
give the explanation of WAL as presented in Ref. [84, 107].

Conductivity is related to the scattering events of electrons on propagating through the
material. When an electron encounters a scattering center, it has many different possible
(closed) paths. In quantum mechanics, conductivity is based on the probability obtained
from summing up the quantum mechanical amplitudes of every path, which results in
quantum interference terms. The interference terms between most paths are usually
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Figure 3.5: Three band-bending directions of Bi2Se3 based on the surface carrier density:
(a) flat band condition, the Fermi levels of both the bulk and the surface are at the same
position — the bottom of the conduction band according to the Mott criterion, resulting
in the surface carrier density nSS ≈ 5× 1012 cm−2; (b) downward band-bending, when
nSS > 5 × 1012 cm−2, the conduction band bends downward and the carriers transfer
from surface to bulk, resulting in a bulk carrier accumulation at the surface; (c) upward
band-bending, when nSS < 5× 1012 cm−2, the conduction band bends upward and the
carriers transfer from bulk to surface, resulting in a bulk carrier depletion at the surface.
Here E is the energy, z is the distance relative to the surface of the material, EF is the
Fermi energy with blue line and red dashed line denoting the bulk and surface Fermi level
respectively. Figure taken from Ref. [84].

averaged out to zero, except for those between the time reversible paths in which electrons
go in a clockwise or anticlockwise manner in a system possessing time reversal symmetry.
Assume the electron wave function before scattering is denoted as ψ. During scattering,
the electron will gain a phase ±φ for the clockwise and anticlockwise paths, respectively,
which results in the wave functions ψ+ = ψeiφ and ψ− = ψe−iφ. The probability for the
electron to return to the original position is given by P = |ψ+ + ψ−|2 = |2ψ cos(φ)|2.
In the case without spin-orbit coupling, the phase φ = 0, and the two paths interfere
constructively, giving P = 4|ψ|2. This should be compared to the classical case without
interference effects for which the probability P = |ψ|2 + |ψ|2 = 2|ψ|2. As a result, in
the quantum situation, the probability for the electrons to return to the original position
is greater, which causes a suppression of the conductivity of the material, known as
weak localization or WL. On the other hand, in a system with strong spin-orbit coupling,
the phase φ = π, and the two paths interfere destructively, yielding P = 0. Now the
probability for the electrons to return to their original location is suppressed, resulting
in an enhancement of the conductivity of the material, known as weak antilocalization
or WAL. When an external magnetic field is applied, time reversal symmetry is broken
and an extra phase eΦ/~ (Φ is the magnetic flux) is acquired by the carriers. With the
increase of the applied magnetic field, the extra phase accordingly increases and gradually
destroys the exact constructive or destructive interference operative in WL or WAL, which
leads to a positive or negative magneto-conductivity, respectively. Figure 3.6 shows these
two effects. In addition, as pointed out in Ref. [108], three characteristic length scales
are important to consider whether WL or WAL may occur. First, the mean free path `,
the average distance travelled by an electron before scattering, should be smaller than
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Figure 3.6: Schematic illustration of constructive and destructive interference between
time reversal paths, and the behavior of the conductance in a small magnetic field: positive
and negative magneto-conductance ∆G(B) for (a) weak localization and (b) weak anti-
localization, respectively. `φ is the phase coherence length. Figures taken from Ref. [84].

the sample size L, otherwise the electrons can travel through the sample without being
scattered. Also, the phase coherence length `φ, the average distance over which an electron
retains its phase coherence, should be larger than the mean free path `: a prerequisite for
the quantum interference. In short, L > `, `φ > `.

The magnetic field dependence of the conductivity σxx of the WL and WAL effect in
2D systems is normally analyzed using the Hikami-Larkin-Nagaoka (HLN) formula [109]:

∆σxx(B) = σxx(B)− σxx(0) = α
e2

2π2~
[Ψ(

~
4e`2

φB
+

1

2
)− ln(

~
4e`2

φB
)] (3.5)

where Ψ is the digamma function, ~ is Planck’s constant divided by 2π, e is the electron
charge, B is the magnetic field. α and `φ are two fitting parameters: `φ being the phase
coherence length, and α a dimensionless parameter related to the number of 2D conduction
channels. α = 1 for WL and -1/2 for WAL for each conduction channel. As `φ is
usually determined by inelastic scattering due to the electron-phonon and electron-electron
interactions, `φ is expected to be temperature dependent. It is empirically expressed as
`φ ∝ T−p/2 [110] with p related to dephasing mechanisms and dimensionality [111].

For 3D topological insulators, the topological surface states are spin-momentum locked
and carry a π Berry phase, which can lead to the observation of WAL. Experimentally,
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the α fitted from the WAL using the HLN formula is mostly in the range of -0.4 to -1.1,
which indicates the contribution from one or two surfaces bands [97, 112–115]. In order to
investigate the contributions from the bulk for WAL, Lu and Shun have derived a unified
model, the 2D modified Dirac model [107], which shows the magnetoconductivity of bulk
bands may have WL or unitary behavior. The bulk channels with unitary behavior in the
magnetoconductivity will not influence the study of the WAL of the surface states, while
the bulk channels with WL behavior in the magnetoconductivity can compensate the WAL
of the surface states.

3.4 The Shubnikov-de Haas effect

The Shubnikov-de Haas effect (SdH) is a periodic oscillation of the conductivity of a
material as a function of the magnetic field B and was discovered by L. Shubnikov and
W.J. de Haas in 1930. The oscillation is periodic in 1/B and originates from the Landau
quantization of the electron energy. In the following paragraphs the SdH effect is explained
using Ref. [116].

Consider an electron with an isotropic effective mass m∗ in a magnetic field B applied
in the z direction. In this case we choose the vector potential in the gauge A = (0, Bx, 0),
and the Hamiltonian is given by

H =
p2
x

2m∗
+

1

2m∗
(py − eBx)2 +

p2
z

2m∗
. (3.6)

For simplicity, the interaction between the spin of the electron and the magnetic field
is ignored. If we write for the momentum py = ~ky, and change the coordinate x to
x′ = x− x0 with x0 = ~ky

eB
, the Hamiltonian can be written as

H =
p′2x

2m∗
+

1

2
m∗ωc

2x′
2

+
p2
z

2m∗
, (3.7)

where we used the definition ωc = eB/m∗. This is the Hamiltonian for a quantum harmonic
oscillator plus a constant energy along the direction of the magnetic field. Therefore, the
energy of the states is given by

En = (n+
1

2
)~ωc +

~2k2
z

2m∗
, n = 0, 1, 2, . . . . (3.8)

The energy is quantized in the kx-ky plane and continuous in the kz direction, which is
known as Landau quantization. The quantized energy levels are called Landau levels (LL).
The quantization scheme in k space is shown in Figure 3.7. For simplicity, we assume
kz = 0 and consider the degeneracy of each LL. Suppose a material within a rectangular
shape of size of Lx, Ly. The center of the quantum harmonic oscillator x0 = ~ky

eB
should be

inside the material, that is 0 ≤ x0 ≤ Lx. Besides, ky is quantized in units of 2π/Ly, that is
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Figure 3.7: Quantization scheme for electrons in the magnetic field shown (a) in the kx-ky
plane and (b) in the whole of k space. Figure taken from Ref. [116].

∆ky = 2π/Ly, which means x0 takes a series of values separated by ∆x0 = 2π~/eBLy.
The degeneracy of each LL is

D =
Lx

∆x0

= LxLy
eB

2π~
=

eB

2π~
S. (3.9)

Here S = LxLy is the area of the material perpendicular to the magnetic field. When
considering the spin degeneracy, a factor of 2 needs to be taken into account. The density
of states (DOS) of the 2D system is g2D(E) = eB

π~ . To obtain the DOS of the 3D system,
the density of states (DOS) of the kz direction g1D(E) ∝ [E − (n+ 1/2)~ω]−1/2 should
be taken into account which results in

g3D(E) =
eB

π~
g1D(E). (3.10)

As the magnetic field increases, the separation (∆E(kz) = ~ω) between the Landau
levels increases. Therefore the highest filled Landau level sweeps through the Fermi level
and becomes empty (see Figure 3.8). During this process, the conductance of the system
shows a peak. Then, as the field continues to rise, the process repeats itself. For simplicity,
assuming kz = 0 and T = 0 K and the number of electrons is N . The Fermi level is EF ,
and is in the middle of a Landau level. When the magnetic field increases to Bn, EF is
located just above the n-th Landau level, and the conductance will show a minimum. All n
Landau levels are occupied and

N = S
eBn

π~
× n (3.11)

As the magnetic field continuously increases, the (n− 1)-th Landau level will now move
up to the Fermi level EF . When EF is at the middle of the (n− 1)-th Landau level, the
conductance will show a maximum. When the magnetic field increases to Bn−1, EF is
located just above the (n− 1)-th Landau level, and the conductance will show a minimum
again and

N = S
eBn−1

π~
× (n− 1) (3.12)



3.4. The Shubnikov-de Haas effect 37

Figure 3.8: Scheme of the filling of the Landau levels with increasing the magnetic field.
Figure taken from Ref. [118]

From Equation 3.11 and 3.12, we obtain

∆(
1

B
) = (

1

Bn

− 1

Bn−1

) =
eS

π~N
(3.13)

The conductance shows minima at Bn and Bn−1, and ∆(1/B) = (1/Bn − 1/Bn−1) is a
constant, which means the conductance oscillates with a period of 1/B. It is known that
the density of states in 2D k space for the free electrons is S/2π2, then the area of the
Fermi surface filled by N electrons is Ak(EF ) = 2π2N/S. Therefore, Equation 3.13 can
be written as

∆(
1

B
) =

2πe

~
1

Ak(EF )
(3.14)

The oscillation period therefore depends on the extremal area of the Fermi surface Ak(EF ),
which was proved by Onsager [117] in 1952. When the oscillations originate from a 2D
Fermi surface, there is only one extremal area of the Fermi surface and therefore only a
single oscillation period or frequency is expected. When rotating the material with respect
to the magnetic field, the oscillation frequency will show a cosine dependence on the
angle between the normal direction of the material surface and the field direction: i.e. the
quantum oscillations will be stationary when plotted against 1/B cos θ

At the same time, the DOS of the Landau levels (see Equation 3.10) also increases
with the increase of the magnetic field, which results in the increase of the amplitude of
the oscillations. The analysis of the amplitude of the SdH oscillations can be carried out
with the help of Lifshitz-Kosevich theory [119]

∆Gxx ∝ RTRD cos[2π(
F

B
− γ)], (3.15)

where RT = αT
B
/ sinh(αT

B
) with α = 2π2kBmc/~e and RD = exp(−αTD/B) with

TD = ~/2πkBτD are called the thermal and Dingle damping factors, respectively, F is the
oscillation frequency and γ is the phase factor. From the equation above we can acquire
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important transport parameters, for example the cyclotron mass mc. When fixing the
magnetic field B, RD does not change, but RT shows a temperature dependence from
which the cyclotron mass mc can be obtained through fitting. If we then fix the temperature
T , the oscillation amplitudes have a magnetic field dependence which allows one to obtain
the Dingle temperature TD. Furthermore, some other transport parameters such as the
Fermi velocity υF , mean free path ` and mobility µ can also be calculated.

Importantly, the phase factor γ can also be obtained, as the conductance shows the n-th
minimum when n Landau levels are completely filled. Then, according to Equation 3.15,

2π(
F

Bn

− γ) = (2n− 1)π. (3.16)

From a linear fit of the plot of 1/Bn versus n, the intercept is γ − 1/2. When γ = 1/2 or
0, it corresponds to the system with either 0 or π Berry phase, respectively.

The conditions for the observation of SdH oscillations are ωcτ > 1 (τ is the scattering
time, the separation between the Landau levels should be larger than the line broadening
due to scattering) and ~ωc > kBT (the separation between the Landau levels should
be larger than their thermal broadening). This means that to observe SdH oscillations
materials should have high mobility (ωcτ > 1 can be transformed into µB > 1, µ is the
mobility) and high magnetic fields and low temperatures should be available.

3.5 Criterion for identification of topological

superconductors

Topological superconductors have attracted much attention in the condensed matter physics
community due to the existence of gapless surface Andreev bound states that are predicted
to host Majorana zero modes [120]. It is important, therefore, to distinguish topological
superconductors from normal superconductors. Fu and Berg have provided a criterion to
identify time-reversal-invariant topological superconductors with inversion symmetry, that
is, (i) the superconducting pair wave function has odd-parity symmetry and the supercon-
ducting gap is fully gapped; (ii) the Fermi surface encloses an odd number of time-reversal
invariant momenta [121]. The Fermi surface topology for topological superconductors
(point (ii)) can be extended from that of topological insulators discussed above due to
the analogy between the Bogoliubov-de Gennes Hamiltonian of a superconductor and the
Bloch Hamiltonian of a band insulator. Here, we focus on odd-parity superconducting
pairing. A superconducting pair wave function consists of an orbital (spatial) and a spin
component. In a simple case, the orbital component is labeled by the orbital angular
momentum L with L = 0, 1, 2, . . . , and the spin component can be presented by the spin
angular momentum S with S = 0, 1 for the spin-singlet and spin-triplet state respectively.
Spin-triplet pairing is referred as odd-parity pairing. A famous example of a topological
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Table 3.1: The form of the pairing potential, irreducible representation, spin state, orbital
state, and energy gap structure for four different pairing symmetries. c carries an orbital
index (1 or 2), and spin index (↑ or ↓). Table adapted from Ref. [127]

Pairing potential Form Representation Spin Orbital Energy gap
∆̂1 c1↑c1↓ + c2↑c2↓ A1g Singlet Intra Isotropic full gap

c1↑c2↓ - c1↓c2↑

∆̂2 c1↑c2↓ + c1↓c2↑ A1u Triplet Inter Anisotropic full gap
∆̂3 c1↑c1↓ - c2↑c2↓ A2u Singlet Intra Point nodes at poles
∆̂4 (c1↑c2↑, c1↓c2↓) Eu Triplet Inter Point node on equator

superfluid is the time-reversal-invariant 3He B phase with L=1 and S=1 [56, 122, 123].
For the electron doped TI, CuxBi2Se3, Fu and Berg developed a two-orbital model to
investigate the pairing symmetry based on the CuxBi2Se3 crystal point group D3d [121].
According to group theory, four different pairing symmetries, with representations A1g,
A1u, A2u, and Eu were found in the D3d point group that were assigned to the correspond-
ing pairing order parameters ∆̂i, i = 1, . . . , 4. Table 3.1 shows the symmetry properties
of ∆̂i. Except for ∆̂1, the pairings have odd-parity symmetry, among which only ∆̂2

pairing has a full superconducting gap. This is in agreement with specific heat data re-
ported in Ref. [124]. ∆̂2 pairing was considered to be the most likely pairing state for
the topological superconducting phase in CuxBi2Se3 according to the criterion of Fu and
Berg. Soon afterwards, Fu proposed that the ∆̂4 pairing state with the 2D representation
Eu would also be fully gapped in CuxBi2Se3, when taking into account the spin-orbit
interaction associated with the hexagonal warping of the Fermi surface. Thus, the ∆̂4

state is also a possible topological superconducting phase [125]. We remark that only the
∆̂4 pairing matches the experimental observation in NMR measurements of rotational
symmetry breaking in the Knight shift in the basal plane [125, 126]. According to the
two-orbital model mentioned above, the ∆̂4 pairing generates a subsidiary nematic order
with a direction n = (nx, ny) in the basal plane determined by zero total spin. Only when
the nematic direction n is along one of the three twofold axes, that is n = (cos θ, sin θ)
with θ = 0,±π/3,±2π/3 (see Figure 3.9(a) for the coordinate system), are there nodes
in the superconducting gap. For example, when n = x̂, there are nodes along y in the
superconducting gap (see Figure 3.9(c)). In all other cases, the nodes are destroyed by
hexagonal warping and a full superconducting gap is present. In particular, when n = ŷ,
the structure of the superconducting gap is as shown in Figure 3.9(d).
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Figure 3.9: (a) View of the crystal structure of CuxBi2Se3 along the c-axis. The coordinates
in the basal plane are x and y, where the x-axis is perpendicular to a mirror plane. (b)
Fermi contour at kz = 0. (c) and (d) display the angular dependence of the anisotropic
superconducting gap at kz = 0 with the Fermi contour for the ∆̂4 pairing being shown for
n = x̂ and n = ŷ, respectively. Figure taken from Ref. [125]



Chapter 4

Low carrier concentration crystals
of the topological insulator

Bi2−xSbxTe3−ySey: a
magnetotransport study

In 3D topological insulators achieving a genuine bulk-insulating state is an important
research topic. Recently, the material system (Bi,Sb)2(Te,Se)3 (BSTS) has been proposed
as a topological insulator with high resistivity and a low carrier concentration (Ren et

al. [29]). Here we present a study to further refine the bulk-insulating properties of
BSTS. We have synthesized Bi2−xSbxTe3−ySey single crystals with compositions around
x = 0.5 and y = 1.3. Resistance and Hall effect measurements show high resistivity and
record low bulk carrier density for the composition Bi1.46Sb0.54Te1.7Se1.3. The analysis of
the resistance measured for crystals with different thicknesses within a parallel resistor
model shows that the surface contribution to the electrical transport amounts to 97 %
when the sample thickness is reduced to 1 µm. The magnetoconductance of exfoliated
BSTS nanoflakes shows 2D weak antilocalization with α ' −1 as expected for transport
dominated by topological surface states.
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4.1 Introduction

Three dimensional (3D) topological insulators (TIs) have generated intense research in-
terest, because they offer unmatched opportunities for the realization of novel quantum
states [1, 3]. Theory predicts the interior of the TI sample (the bulk) is insulating, while
the metallic surface states have a Dirac cone dispersion and a helical spin structure. Be-
cause of time reversal symmetry and a strong spin-orbit interaction, the surface charge
carriers are insensitive to backscattering from non-magnetic impurities and disorder. This
makes TIs promising materials for a variety of applications, ranging from spintronics
and magnetoelectrics to quantum computation [123, 128, 129]. The topological surface
states of exemplary TIs, such as Bi1−xSbx, Bi2Te3, Bi2Se3, Sb2Te3, etc., have been probed
compellingly via surface-sensitive techniques, like angle-resolved photoemission spec-
troscopy (ARPES) [15, 17, 19, 130] and scanning tunneling microscopy (STM) [21, 22].
However, the transport properties of the surface states turn out to be notoriously difficult
to investigate, due to the dominant contribution from the bulk conduction resulting from
intrinsic impurities and crystallographic defects. At the same time, potential applications
strongly rely on the tunability and robustness of charge and spin transport at the device
surface or interface. Therefore, achieving surface-dominated transport in the current fami-
lies of TI materials remains a challenging task, in spite of the progress that has been made
recently, including charge carrier doping [96, 99], thin film engineering and electrostatic
gating [131, 132].

Recently, it was reported that the topological material Bi2Te2Se exhibits variable range
hopping (VRH) behavior in the transport properties, which leads to high resistivity values
exceeding 1 Ωcm at low temperatures [27]. This ensures the contribution from the bulk
to electrical transport is small. At the same time the topological nature of the surface
states was probed by Shubnikov - de Haas oscillations [27, 28]. Further optimizing studies
include different crystal growth approaches [26], Bi excess [133] and Sn doping [95, 134].
Bi2Te2Se has an ordered tetradymite structure (spacegroup R3m) with quintuple-layer
units of Te-Bi-Se-Bi-Te with the Te and Se atoms occupying distinct lattice sites. Next
the composition of Bi2Te2Se was optimized by Ren et al. [29] by reducing the Te:Se ratio
and introducing Sb on the Bi sites. An extended scan of isostructural Bi2−xSbxTe3−ySey
(BSTS) solid solutions resulted in special combinations of x and y, notably x = 0.5 and
y = 1.3, where the resistivity attains values as large as several Ωcm at liquid helium
temperature. In addition values of the bulk carrier concentration as low as 2×1016 cm−3

were achieved [30]. The topological properties of BSTS samples with x and y near
these optimized values were subsequently examined by a number of techniques, like
ARPES [135], terahertz conductivity [136], and STM and STS [137, 138].

In this paper we report an extensive study conducted to confirm and further investigate
the bulk-insulating properties of Bi2−xSbxTe3−ySey with x and y around 0.5 and 1.3,
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respectively. In the work of Ren et al. [29] the BSTS composition was scanned with a step
size ∆x and ∆y of typically 0.25. For our study we prepared single crystals with much
smaller step sizes, typically ∆x = 0.02 and ∆y = 0.10. Magnetotransport measurements
showed that the carrier type in Bi2−xSbxTe1.7Se1.3 changes from hole to electron when
x < 0.5, while the carrier type remains unchanged in Bi1.46Sb0.54Te3−ySey when y is varied
from 1.2 to 1.6. The composition Bi1.46Sb0.54Te1.7Se1.3 presented the highest resistivity
(12.6 Ωcm) and lowest bulk carrier density (0.2× 1016 cm−3) at T = 4 K.

In addition, the effect of reducing the sample thickness on the ratio between the sur-
face and bulk conductivity was investigated. For this study we used the composition
Bi1.46Sb0.54Te1.4Se1.6 and gradually thinned down a 140 µm thick sample to 6 µm. The
analysis of the resistance data in terms of a two-resistor model reveals the surface con-
tribution to the total conductivity can be as large as 97 % at T = 4 K when the sample
thickness is ∼1 µm. The angular variation of the magnetoconductance of a nanoflake with
composition Bi1.46Sb0.54Te1.7Se1.3 shows a pronounced weak antilocalization (WAL) term,
whose field dependence followed the Hikami-Larkin-Nagaoka formula [109] with a fit
parameter α close to -1 as expected for topological surface states [107]. We conclude that
good quality BSTS single crystals can be achieved via careful compositional variation
and thickness reduction such that the topological surface transport overwhelms the bulk
conduction channel.

4.2 Methods

High quality Bi2−xSbxTe3−ySey single crystals were obtained by melting stoichiometric
amounts of the high purity elements Bi (99.999 %), Sb (99.9999 %), Te (99.9999 %)
and Se (99.9995 %). The raw materials were sealed in an evacuated quartz tube which
was vertically placed in the uniform temperature zone of a box furnace. Both this choice
of growth approach and our choice to keep the growth boules of small size (maximal
dimension 1 cm) were made so as to maximize the homogeneity within each single crystal
run. The molten material was kept at 850 ◦C for 3 days and then cooled down to 520 ◦C
with a speed of 3 ◦C/h. Next the batch was annealed at 520 ◦C for 3 days, followed by
cooling to room temperature at a speed of 10 ◦C/min. In the following all x- and y-values
refer to nominal concentrations. Electron probe micro analysis (EPMA) carried out on
six crystals selected within the series showed the nominal compositions to be in good
agreement with the stoichiometry in the final single crystals produced. In addition, EPMA
showed there to be no observable spatial inhomogeneity across the sample, which is in
keeping with the homogeneous secondary electron images the crystals gave and the lack
of any measurable impurity phases seen in standard X-ray diffraction characterisation of
the samples. The systematic thickness dependence reported in the following also argues
for an acceptable level of sample homogeneity. The as-grown platelet-like single crystals
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were cleaved with Scotch tape parallel to the ab-plane to obtain flat and shiny surfaces at
both sides. Care was taken to maintain a sample thickness of ∼ 100 µm for all samples.
Next the samples were cut into a rectangular shape using a scalpel blade. For the transport
measurements in a five-probe configuration, thin (50 µm) copper wires were attached to
the samples using silver paint. Current and voltage contacts were made at the edges of the
sample to ensure contact with the bulk and the upper and lower surface. The exposure time
to air between cleaving and mounting the samples in the cryostat was kept to a minimum
of about 1 h.

Four-point, low-frequency, ac-resistivity and Hall effect measurements were performed
in a MaglabExa system (Oxford Instruments) equipped with a 9 T superconducting magnet
in the temperature range from 4 to 300 K. The excitation current was typically 1000 µA.
Selected measurements were spot-checked using a PPMS system (Dynacool, Quantum
Design) with 100 µA excitation current. Measurements were always made for two polarities
of the magnetic field after which the Hall resistance, Rxy, and longitudinal resistance, Rxx,
were extracted by symmetrization. When investigating the effect of the sample thickness,
layers were removed from the sample by Scotch tape. Special care was taken to maintain
a uniform thickness across the sample, as well as the same lateral dimensions. For the
thickness-dependent series, the resistance measurements were made in a bath cryostat in
the temperature range 4.2-300 K using an AC Resistance Bridge (Model 370, LakeShore
Cryotronics).

For our investigation of the WAL effect, flakes of thickness in the range of 80 to 200 nm
were mechanically exfoliated on silicon-on-insulator substrates. Au Hall bar electrodes
were prepared by standard photolithography followed by e-beam lithography and argon
ion etching to shape the flake in a Hall bar structure. During the fabrication steps we
covered the devices with e-beam or photoresist to avoid damaging and contamination
of the surface. The Hall bars have a total length of 24 µm and have widths in the range
of 0.5-2.0 µm. Transport measurements on these samples were carried out in a PPMS
(Dynacool, Quantum Design) in the temperature range 2-300 K with an excitation current
of 5 µA. The field-angle dependence of WAL was measured for a rotation of the Hall bar
around its long axis (the current direction).

ARPES measurements were carried out on cleaved single crystals of Bi2Se3 and
Bi1.46Sb0.54Te1.7Se1.3 at the SIS beamline of the Swiss Light Source at the Paul Scherrer
Institute. The photon energies used were 27 and 30 eV, and the sample temperature was
17 K. In both cases, the surfaces were exposed to sufficient residual gas such that the
downward band bending – as documented in [139,140] for Bi2Se3 – has saturated and thus
was no longer changing as a function of time. The energy resolution was 15 meV.
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Figure 4.1: Temperature dependence of the resistivity of Bi2−xSbxTe3−ySey crystals with
(a) y = 1.3 and x-values as indicated, and (b) x = 0.54 and y-values as indicated. The
typical sample thickness is 100 µm.

4.3 Results and analysis

4.3.1 Composition variation

In this section we present the resistivity, ρxx, and Hall effect, ρxy, data. Rather than simply
re-growing the optimal (x, y)-values of (0.5,1.3) reported by Ren et al. [29], we first varied
x from 0.42 to 0.58 while keeping y fixed at 1.3. Next, we fixed x at 0.54 and varied
y from 1.2 to 1.6. The size of the steps taken in both x and y were smaller than those
reported earlier. The temperature variation of the resistivity for these two series of crystals
is shown in Figure 4.1(a) and Figure 4.1(b), respectively. All the samples display an
overall similar resistivity behavior. Upon cooling below 300 K the resistivity increases
first slowly and then faster below ∼ 150 K till ρxx reaches a maximum value at 50-100 K.
Next the resistivity shows a weak decrease and levels off towards 4 K. The increase of
the resistivity can be described by an activated behavior ρxx ∝ exp(∆/kBT ) where ∆

is the activation energy, followed by a 3D VRH regime ρxx ∝ exp[(T/T0)−1/4]) where
T0 is a constant [29]. These different regimes show considerable overlap as illustrated
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Figure 4.2: Temperature variation of the resistivity of BSTS in a plot of ln ρxx versus 1/T
in frames (a) and (c), and versus T−1/4 in frames (b) and (d). The linear dashed lines
represent the activation behavior and the 3D VRH behavior (see text). In frames (a) and
(b) we have traced the resistivity for y = 1.3 and x-values as indicated, and in frames (c)
and (d) the resistivity for x = 0.54 and y-values as indicated.

in Figure 4.2(a) and (b), and in Figure 4.2(c) and (d). Below ∼ 50 K the resistivity is
described by a parallel circuit of the insulating bulk and the metallic surface states (see the
next subsection).

In Table 4.1 we have collected the ρxx-values at 280 K and 4 K and the activation
energy ∆ for a number of samples. The data in this table represent the summary of 35
individual measurements, 15 of which were carried out on the x = 0.54 and y = 1.3

composition. The resistivity values at T = 4 K all exceed 5 Ωcm. We remark that in
our first series of crystals with a fixed value y = 1.3 the sample with x = 0.54 has a
record-high ρxx-value of 12.6 Ωcm at T = 4 K, and the largest value ∆ = 102 meV as
well. Subsequent small changes of y in the range 1.2-1.6 did not yield a further increase of
the low temperature resistivity.
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Table 4.1: Transport parameters obtained from resistivity and Hall effect measurements
of BSTS crystals with composition as given in the first column: ρxx(280 K), ρxx(4 K),
activation energy ∆ estimated from the linear part in ln ρxx vs. 1/T , the low-field Hall
coefficient RH(200 K) and RH(4 K), the bulk carrier density nb and the transport mobility
µ calculated in a single band model.

Composition ρxx(280 K) ρxx(4 K) ∆ RH(200 K) RH(4 K) nb(4 K) µ(4 K)
Bi2−xSbxTe3−ySey (mΩcm) (Ωcm) (meV) (cm3/C) (cm3/C) (1016 cm−3) (cm2/Vs)
x = 0.58 ; y = 1.3 50.5 10.4 44 — -468 1.3 45
x = 0.54 ; y = 1.3 53.6 12.6 102 30 -3110 0.2 247
x = 0.50 ; y = 1.3 141 7.1 56 27 380 1.6 54
x = 0.48 ; y = 1.3 81.9 5.5 48 20 -167 3.7 30
x = 0.46 ; y = 1.3 36.6 5.0 72 31 1657 0.4 331
x = 0.42 ; y = 1.3 44.4 6.8 36 4 6 107 0.9
x = 0.54 ; y = 1.6 133 8.6 83 -92 -707 0.9 82
x = 0.54 ; y = 1.5 214 8.9 66 37 -278 2.2 31
x = 0.54 ; y = 1.2 — 12.1 48 8 -1940 0.3 160

Figure 4.3: Temperature dependence of the low-field Hall coefficient RH of BSTS crystals
with (a) y = 1.3 and x-values as indicated, and (b) x = 0.54 and y-values as indicated.
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Given these resistivity data, Hall experiments are of interest to examine the character
and quantity of bulk carriers in these samples. The temperature variation of the low-field
Hall coefficient RH(T ) for the two series of crystals with fixed y = 1.3 and fixed x = 0.54

is shown in Figure 4.3(a) and (b), respectively. The Hall coefficients were obtained by
fitting the linear Hall resistivity for B ≤ 1 T. For the first series (Figure 4.3(a)), RH of all
samples is positive at temperatures above 200 K and the values gradually increase upon
lowering the temperature. Near 150 K, i.e. near the temperature where the resistivity
starts to rise quickly, the absolute value of the Hall coefficient increases rapidly. For an
increasing Sb content with respect to x ≈ 0.5, RH turns negative, whereas for a decreasing
Sb content RH remains positive. For the second series of samples (Figure 4.3(b)) RH of all
samples starts positive near room temperature, but eventually attains fairly large negative
values near 4 K.

The carrier type and concentration in BSTS and related compounds is in general
connected to the competition between two effects: (i) (Bi,Sb)/Te antisite defects which
act as electron acceptors (or hole dopants), and (ii) Se vacancies which act as electron
donors. This tells us that in the high temperature regime where RH > 0 (Bi,Sb)/Te
antisite defects are dominant in providing carriers. However, at low temperatures RH < 0

and Se vacancies prevail, except for the crystals with a reduced Sb content (x < 0.5).
RH-values at 200 K and 4 K are listed in Table 4.1. In order to compare the transport
parameters with values reported in the literature we have listed the bulk carrier density,
nb, and mobility µ = 1/neρxx as well, assuming a simple single band model. Clearly, in
these data, the crystal with the composition Bi1.46Sb0.54Te1.7Se1.3 stands out as the one
with the highest resistivity, the largest activation gap and the lowest carrier concentration
nb = 0.2× 1016 cm−3.

We grew three batches of single crystals of this composition and the measurement of 15
single crystals of Bi1.46Sb0.54Te1.7Se1.3 gave a reproducible picture that this composition
generally gave the most bulk-insulating behaviour. There is some sample to sample
variation in the transport parameters. For example, the low-T resistivity for the x = 0.54,
y = 1.3 composition of 12.6 Ωcm given in Table 4.1 was representative, but values were
also measured to be in the range of 11-15 Ωcm.

4.3.2 Thickness variation

A simple and elegant way to separate the contribution from the surface and the bulk to
the total conductivity of a topological insulator is by reducing the sample thickness, t [30,
115, 141, 142]. In Figure 4.4(a) we show the resistivity ρ(T ) of a Bi1.46Sb0.54Te1.4Se1.6

crystal with t = 140 µm that subsequently was thinned down in 12 steps to 6 µm. Here
ρ = (A/l)×R where A = t×w is the cross sectional area for the current (w is the sample
width) and l the distance between the voltage contacts. The overall behavior ρ(T ) for all
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Figure 4.4: (a) Temperature dependence of the resistivity of a Bi1.46Sb0.54Te1.4Se1.6 crystal
with thickness t = 140 µm thinned down in 12 steps to 6 µm as indicated. (b) Measured
resistivity at 8 K as a function of thickness (solid dots). The solid line represent a fit of the
data to the parallel resistor model (see text).

thicknesses is similar to the results presented in Figure 4.1. However, while the curves
almost overlap at high temperatures, the ρ-value at low temperatures decreases significantly
when reducing the sample thickness. This tells us the ratio between the surface and bulk
contribution changes with thickness.

For a proper analysis the parallel resistor model is used:

ρ =
ρbρs(tb + 2ts)

2tsρb + tbρs

(4.1)

where ρb and ρs are the resistivities, and tb and ts the thicknesses, of the bulk and the
surface layer [29], respectively. For ts we may take 3 nm which is the thickness of 1 unit cell.
The factor 2 in the Equation 4.1 above counts the top and the bottom surface of the sample.
In Figure 4.4(b) we have traced ρ taken at 8 K as a function of t ∼= tb. The uncertainty in
the ρ-values is mainly due to the error in the geometrical factor, especially in the value of l
(±5%) because of the finite size of the silver paint contacts. The solid line represents a least
square fit to Equation 4.1 with fit parameters ρb = 19.0 Ωcm and ρs = 3.14×10−3 Ωcm, or
expressed as conductivities σb = 0.053 Ω−1cm−1 and σs = 318 Ω−1cm−1. Consequently,
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the surface conductance Gs = 2× ts × σs = 1.91× 10−4 Ω−1. We remark our value for
σb compares favorably to (is smaller than) the values 0.1 Ω−1cm−1 and 0.12 Ω−1cm−1

for sample compositions Bi1.5Sb0.5Te1.7Se1.3 and Bi1.5Sb0.5Te1.8Se1.2 reported in [30] and
[115], respectively. The ratio of the surface conductance over the total sample conductance
can be calculated as Gs/(Gs + tσb). With our fit parameters we calculate for samples
with a thickness of 100, 10 and 1 µm a surface contribution of 27 %, 78 % and 97 %,
respectively. For a nanoflake with typical thickness of 130 nm (see the next subsection),
we obtain a value of 99.6 %. We conclude surface-dominated transport can be achieved
in our BSTS crystals grown with a global composition Bi1.46Sb0.54Te1.4Se1.6 when the
sample thickness is less than ∼ 1 µm.

4.3.3 Weak antilocalization

The thickness dependence of the resistivity shows dominance of surface transport for thin
samples. A further test as to whether the surface dominated transport is consistent with
the presence of topological surface conduction channels is to search for and characterise
possible signals of weak antilocalization. For our study of weak antilocalization we
selected the BSTS composition we found to give crystals with the highest bulk resistivity:
Bi1.46Sb0.54Te1.7Se1.3. The magnetoresistance of an exfoliated nanoflake, structured by
e-beam lithography into a Hall bar, was measured in the temperature range 2-40 K and in
magnetic fields up to 2 T. The dimensions of the Hall bar are: thickness t = 130± 5 nm,
channel width w = 2 ± 0.02 µm and distance between the voltage contacts l = 6.75 ±
0.25 µm. The error in l takes into account the extended size of the voltage electrodes.
The temperature variation of the resistivity ρ(T ) of the Hall bar is shown in the inset of
Figure 4.5(b). For this thickness the resistivity at low temperatures levels off at a low value
of 0.035 Ωcm, in good agreement with the functional behavior reported in Figure 4.4(b) for
BSTS with a Se content y = 1.6. Since ρb � ρs we obtain a sheet or surface conductance
Gs ≈ t/ρ = 3.7× 10−4 Ω−1.

In Figure 4.5(a) we show the resistance, Rxx, as a function of B, measured at T = 2 K.
The relatively sharp increase of Rxx with field is ubiquitous in TIs [107, 143, 144] and is
attributed to the suppression of 2D weak antilocalization, i.e. the constructive interference
of time reversed scattering loops, generated by a magnetic field applied perpendicular to the
sample surface, B⊥. As the analysis of the magnetoresistance data we carry out below will
show, the phase coherence length lφ for the WAL in this system is of the same order as the
flake thickness, justifying a double-check that the WAL behavior is indeed two-dimensional
by recording the angular dependence of the WAL. In Figure 4.5(a), the magnetoresistance,
∆R ≡ R(B) − R(0) (we have dropped the subscript xx) is seen to be largest for B
perpendicular to the sample surface (θ = 0◦). For an in-plane magnetic field (θ = 90◦)
a small residual magnetoresistance is seen of unknown origin, but this has essentially
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Figure 4.5: (a) Longitudinal resistance Rxx of a BSTS Hall bar fabricated from a 130 nm
thick flake measured at T = 2 K as a function of the magnetic field for different field
angles as indicated. For θ = 0◦, B is directed perpendicular to the sample surface. (b)
Magnetoconductance ∆G at T = 2 K plotted as a function of B cos θ, where θ is the angle
between the surface normal and B. The data collapse onto an universal curve, which
confirms the 2D nature of WAL. The open circles represent a fit to the HLN expression
(Equation 4.2) in the field range B⊥ = 0− 0.5 T. The fit parameters are lφ = 116 nm and
α = −1.14. Inset: ρxx of the BSTS Hall bar as a function of temperature.

no effect on the parameters coming out of the fits to the data presented and discussed
in the following. In Figure 4.5(b) we trace the magnetoconductance ∆G2D(B, θ) ≡
G(B, θ)−G(B, θ = 90◦) for 0◦ ≤ θ ≤ 80◦ as a function of B cos θ. Obviously, the data
collapse onto an universal curve, which signals the two dimensional character of the WAL
in these samples.

Next we compare the universal curve with the expression for the magnetoconduc-
tivity ∆σ2D of 2D weak antilocalization put forward by Hikami, Larkin and Nagaoka
(HLN) [109]:

∆σ2D = − αe2

2π2~

(
ln

(
~

4el2φB

)
− ψ

(
1

2
+

~
4el2φB

))
(4.2)

Here ψ is the digamma function, lφ is the effective phase coherence length and α is a
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Figure 4.6: ARPES data recorded from the surfaces of Bi1.46Sb0.54Te1.7Se1.3 (left) and
Bi2Se3 (right) under conditions of saturated downward band bending due to adsorption
of residual gas atoms on the surface. The data cut through the center of the surface
Brillouin zone were measured using photon energies of 27 eV (BSTS) and 30 eV (Bi2Se3)
at a temperature of 17 K. The arrows in the right panel denote the spin polarization of
the Rashba-type surface states observed on band-bent Bi2Se3. Notice the different energy
scales of the two panels

Table 4.2: Phase coherence length lφ and prefactor α, obtained by fitting the 2D magneto-
conductance of BSTS crystals to the HLN expression, Equation 4.2. B⊥,max gives the field
range for the fit (see text).

Composition Thickness B⊥,max lφ α Temperature Reference
Bi2−xSbxTe3−ySey (nm) (T) (nm) (K)
x = 0.54 ; y = 1.3 130 0.5 116 -1.14 2 this work
x = 0.54 ; y = 1.3 130 0.5 52 -0.93 40 this work
x = 0.5 ; y = 1.3 200 0.5 121 -0.96 2 [114]
x = 0.5 ; y = 1.2 596 0.5 160 -0.75 2 [115]
x = 0.5 ; y = 1.3 85 6 170 -1.3 4 [145]
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prefactor. Each scattering channel from a band that carries a π Berry phase contributes a
value α = −1/2 [107]. For independent bottom and top topological surface channels we
therefore expect α = −1. In Equation 4.2, ∆σ2D = l

w
∆G2D, where l

w
= 3.38±0.13. We

have fitted the collapsed magnetoconductance data at T = 2 K to the HLN expression with
lφ and α as fit parameters. In the field interval B cos θ = 0− 0.5 T we find lφ = 116 nm
and α = −1.14 ± 0.06. For this value of lφ we calculate Bφ = ~/4el2φ = 0.012 T and
the condition B � Bφ is easily met, i.e. the applied field is sufficiently large to suppress
WAL. Furthermore, lφ � w which ensures our Hall bar has the proper dimensions for
2D WAL. If we extend the field range of the fit, the value of α decreases slightly, but at
the same time the quality of the fit decreases. For instance, by fitting up to 2 T we obtain
α = −0.96± 0.06.

The temperature variation of the field-induced suppression of WAL has been investi-
gated at T = 2, 4, 10, 15, 25 and 40 K. By increasing the temperature the WAL becomes
weaker and is suppressed more easily by the magnetic field. By fitting our collapsed
∆G2D(B⊥) curves, lφ decreases to 52 nm at T = 40 K. A power-law fit yields lφ ∝ T−0.46

in the temperature range 10-40 K, which is close to the expected behavior T−0.5 for 2D
WAL. However, below 10 K lφ levels off and the exponent drops to -0.06. The prefactor α
decreases slightly to −0.93± 0.05 at 40 K for a fit range 0− 0.5 T.

4.4 Discussion

Single crystals of Bi2−xSbxTe3−ySey with x and y around 0.5 and 1.3 can nowadays clearly
be considered to have superior bulk insulating properties [29,30,114,115,145] amongst the
3D topological insulators. This makes BSTS particularly attractive for exploratory research
into TI devices with functionalities based on protected surface transport. In this paper
we have shown that by fine tuning the BSTS composition it is possible to obtain record
high values of the resistivity. For a global composition of Bi1.46Sb0.54Te1.7Se1.3 low-T
resistivity values exceeding 10 Ωcm were common for samples with a thickness of 100 µm.
At the same time Hall data show the bulk carrier concentration in these samples can be as
low as 0.2× 1016 cm−3 at T = 4 K. The strong bulk insulating behavior is furthermore
demonstrated by the large value of the activation gap for transport, ∆ ' 100 meV. The
data of Table 4.1 show there to be a non-trivial dependence of the transport characteristics
on the x and y-values chosen for each single crystal batch. Our sample characterization
shows that this is clearly not a consequence of random compositional irreproducibility
from sample to sample. Rather, the chemistry controlling the defect density and balance
(between p- and n-type) in these low-carrier concentration 3D TI materials is a subtle
quantity, and not one that simply tracks the Bi/Sb and Te/Se ratios in a linear fashion. This
makes a variation of composition necessary to determine the best route to the most bulk
insulating behaviour. This was done in Ref. [29] and is also the approach adopted here,
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resulting in excellent bulk-insulating characteristics.

Because of the genuine bulk insulating behavior of the optimized BSTS crystals, the
ρ-values obtained at low temperatures are not true resistivity values but depend on the
thickness when t ≤ 1 mm (see Figure 4.4). Therefore the transport data result from parallel
channels due to the bulk and top/bottom surfaces. Our analysis with the parallel resistor
model of the resistance measured on the very same BSTS crystal made thinner and thinner
shows that the surface contribution to the total transport is close to 97 % for a thickness
of 1 µm. Hence we conclude that devices fabricated with submicrometer thickness are
sufficiently bulk insulating to exploit the topological surface states by transport techniques.
The nanoflake with a thickness of 130 nm certainly fulfills this condition.

The HLN fit of the magnetoconductance of the thin flake yields values of α close to -1,
which is in keeping with the thickness dependence of the resistivity shown in Figure 4.4 in
that for a flake of this thickness essentially all of the transport occurs through the surface
states. The α value of close to -1 would suggest that it is the topological surface states
at the top and bottom of the crystal which are dominating the transport. In Table 4.2 we
have collected the fit parameters lφ and α, as well as those obtained for BSTS nanoflakes
reported in the recent literature. Hsiung et al. [114] measured a flake with enhanced
surface mobility and reported an α-value close to -1 as well. The α-values reported by
Xia et al. [115] obtained on a relatively thick nanoflake are systematically smaller than
-1. Lee et al. [145] found a significantly larger value α = −1.3 for a gated nanoflake at
zero bias. Here the large value of α is attributed to the combined presence of non-trivial
and Rashba-split conduction channels in the topologically trivial 2DEG caused by band
bending.

The existence (or not) of Rashba spin-split states at the surface of BSTS is of importance
for the magnetoconductance – and in particular – the WAL behaviour. The alpha value we
extract for BSTS of close to -1 (Table 4.2) suggests there is not a contribution from Rashba
spin-split states in our BSTS crystals. In Bi2Se3 it is well established from ARPES that
topologically trivial, confined bulk states can form a 2DEG in the near surface region and
that these states can also show Rashba-type spin splitting [139, 140]. Thus, in Figure 4.6
we show two ARPES images of the portion of k-space near the Gamma-point: one for
Bi2Se3 and one for a BSTS crystal from the same source and of the same composition as
the flake used for the WAL studies. In both cases, we show ARPES data from surfaces after
significant exposure to adsorbates - i.e. for the case of essentially maximal band-bending.
The Bi2Se3 data show clear signs of confinement of states related to both the conduction
and valence bands, as well as of emerging Rashba-type spin splitting for the states crossing
the Fermi level, in accordance with the literature [139, 140]. The left panel of Figure 4.6
shows analogous data for adsorbate exposed BSTS. The downward band bending has led
to the population of states derived from the bulk conduction band, but there is clearly no
Rashba-type spin splitting at the BSTS surface. This is fully consistent with the alpha
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value close to -1 extracted from the analysis of the WAL data shown in Figure 4.5 and
Table 4.2.

4.5 Summary

We have presented an extensive study of the bulk-insulating properties of BSTS single
crystals. We have synthesized numerous Bi2−xSbxTe3−ySey single crystals with composi-
tions around x = 0.5 and y = 1.3, with steps in x of 0.02 and y of 0.1. The samples were
investigated by resistance and Hall effect measurements. We show that via variation of the
composition on a fine level, we could arrive at a record-high resistivity, bulk-insulating
transport behaviour and a low carrier density, e.g. for multiple growth runs for the com-
position Bi1.46Sb0.54Te1.7Se1.3. Because of the genuine bulk insulating behavior of these
optimized BSTS crystals, the ρ-values obtained at low temperatures are not true resistivity
values but depend on the thickness when t ≤ 1 mm. An analysis of the resistance vs.
thickness within a parallel resistor model of the resistance measured for crystals with
different thicknesses shows that the surface contribution to the electrical transport amounts
to 97 % when the sample thickness is reduced to 1 µm. Hence we conclude that devices
fabricated with submicrometer thickness are sufficiently bulk insulating to exploit the
topological surface states by transport techniques. This conclusion is supported by the
observed collapse of the magnetoconductance data of an exfoliated BSTS nanoflake as a
function of the perpendicular magnetic field component, further confirming 2D transport.
The analysis within the HLN model for 2D weak antilocalization shows the fit parameter
α ' −1 as expected for conduction via a pair of topological surface states. Both this fact
and our ARPES data recorded under band-bent conditions show a lack of Rashba-split
non-topological surface states in our Bi1.46Sb0.54Te1.7Se1.3 crystals.





Chapter 5

Quantum oscillations of the
topological surface states in low
carrier concentration crystals of

Bi2−xSbxTe3−ySey

We report a high-field magnetotransport study on selected low-carrier crystals of the
topological insulator Bi2−xSbxTe3−ySey. Monochromatic Shubnikov - de Haas (SdH)
oscillations are observed at 4.2 K and their two-dimensional nature is confirmed by tilting
the magnetic field with respect to the sample surface. With help of Lifshitz-Kosevich
theory, important transport parameters of the surface states are obtained, including the
carrier density, cyclotron mass and mobility. For (x, y) = (0.50, 1.3) the Landau level
plot is analyzed in terms of a model based on a topological surface state in the presence
of a non-ideal linear dispersion relation and a Zeeman term with gs = 70 or −54. Input
parameters were taken from the electronic dispersion relation measured directly by angle
resolved photoemission spectroscopy on crystals from the same batch. The Hall resistivity
of the same crystal (thickness of 40 µm) is analyzed in a two-band model, from which
we conclude that the ratio of the surface conductance to the total conductance amounts to
32 %.
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5.1 Introduction

Topological insulators (TIs) in three dimensions (3D) attract much attention as versatile
platforms to study new forms of quantum matter [146]. TIs are bulk insulators with
a non-trivial topology of the electronic bands that gives rise to metallic states at the
surface [1, 3]. The gapless surface states host a wealth of new physics, because they have a
Dirac-type energy dispersion and the spin is locked to the momentum. As a result, they
are immune to backscattering due to disorder, provided that time reversal symmetry is
preserved. This makes TIs promising materials for applications in fields like spintronics
and magnetoelectronics [1, 3]. At the same time, TIs offer an almost unlimited source
of test-case materials for new theoretical ideas and concepts, like the quantum spin Hall
effect [147], Majorana physics [148] and quantum computation [129].

Probably the best studied TI family consists of the layered compounds Bi2Te3, Bi2Se3,
Sb2Te3, etc. The prediction that these materials are 3D TIs with a single Dirac cone on the
surface [16], was promptly verified in experiments by the surface sensitive technique of
angle-resolved photoemission spectroscopy (ARPES) [17, 19, 130]. However, the interior
(bulk) of these workhorse TI materials is in general not a genuine insulator, because
of the presence of charge carriers induced by impurities and defect chemistry. This
seriously hampers the study of topological surface states in transport experiments, as
well as potential device applications based on spin and charge transport. In order to
solve this problem several research directions have been pursued, among which charge
carrier doping [99, 149], thin film engineering and electrostatic gating [131, 132]. Yet
another route was promoted by Ren et al. [29], namely to approach the intrinsic topological
insulator regime by optimizing the Bi2−xSbxTe3−ySey (in short BSTS) composition. The
composition around (x, y)=(0.50,1.3) was found to be the optimum for bulk insulating
behavior, as evidenced by a resistivity of several Ωcm at liquid helium temperatures and a
bulk carrier concentration of ∼ 2× 1016 cm−3. The appealing topological properties of
BSTS, notably a tunable Dirac cone, were furthermore demonstrated by ARPES [135],
STM and STS [137] and THz Time Domain Spectroscopy [136]. We remark that recently
also stoichiometric BiSbTeSe2 has become an attractive material to investigate topological
surface states [54, 150, 151].

Recently we reported an extensive magnetotransport study that aimed at the further
investigation of the bulk-insulating properties of BSTS [152]. Single crystals with compo-
sition Bi1.46Sb0.54Te1.7Se1.3 produced the highest resistivity (12.6 Ωcm) and lowest bulk
carrier density (0.2 × 1016 cm−3) at low temperatures. The contribution from the bulk
and surface channels to the total resistance can be disentangled by employing a parallel
resistor model. For a sample with a typical thickness of 100 µm, the ratio of the surface
conductance over the total conductance is about 27 %. Upon further reducing the sample
thickness, this ratio increases and it can be as large as 97 % for a 1 µm thick sample [152].
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The magnetoconductance of BSTS nanoflakes, prepared around the optimum composition,
showed 2D weak antilocalization with an amplitude α ' −1, as expected for transport
dominated by topological surface states [152].

In this paper we report a high-magnetic field transport study on selected, optimized
BSTS crystals, which enabled us to probe the surface states by quantum oscillations in
the resistance, via the Shubnikov - de Haas (SdH) effect. The SdH effect is a powerful
tool to discriminate between 2D and 3D Fermi surfaces [117]. At the same time, it may
give direct access to the topological nature of the surface states via the geometric phase
(Berry phase) [153, 154] of the quantum oscillations. Therefore, the SdH effect in TIs
has received ample attention in the literature, notably through experiments carried out on
bulk crystals of Bi2Te3, Bi2Se3 and Bi2Te2Se [27, 28, 99, 149, 155]. In addition, the SdH
effect was reported for non-stochiometric BSTS (x, y)=(0.50,1.3) bulk crystals [30] and
nanoflakes [114]. In most cases, the phase offset of the quantum oscillations obtained from
a linear Landau level plot has been interpreted as a finite Berry phase. However, such an
interpretation is not straight-forward because of the non-ideal Dirac dispersion and the
sizeable Zeeman effect due to the large gs-factor [153, 154]. Therefore, care should be
taken when using the phase offset of the SdH oscillations as direct evidence for topological
surface states.

Here we present SdH data for BSTS crystals with compositions Bi1.5Sb0.5Te1.7Se1.3

and Bi1.46Sb0.54Te1.7Se1.3. The SdH oscillations are monochromatic and their field-angular
variation demonstrates their 2D nature. The standard analysis using Lifshitz-Kosevich
theory gives a 2D carrier density of 1.5 and 0.8× 1012 cm−2, and a cyclotron mass of 0.18
and 0.10me, respectively. For (x, y)=(0.50,1.3) the Landau level plot is analyzed in terms
of a topological surface state with help of the non-linear dispersion relation measured
directly by ARPES, and a Zeeman term with gs = 70 or −54. In addition, we show that
the Hall resistivity of the same crystal (of thickness 40 µm) can be analyzed successfully
in a two-band model, from which a surface contribution to the total conductance of 32 %
is arrived at.

5.2 Experimental

The BSTS single crystals used for the SdH measurements were taken from the same
batch that was prepared for the magnetotransport study reported in Ref. [152]. Here we
focus on crystals around the optimum composition, i.e. with (x, y) = (0.50, 1.3) and
(x, y) = (0.54, 1.3), whereby the x- and y-values refer to nominal concentrations. For
details of the single crystal growth procedure and characterization of the crystals by
magnetotransport we refer to Ref. [152]. Flat rectangular samples were cut from the single-
crystalline boule using a scalpel blade. Next the samples were cleaved in the ab-plane
of the rhombohedral structure, at both top and bottom sides, using Scotch tape so as to
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obtain a thickness of around 50 µm. The longitudinal, Rxx, and Hall resistance, Rxy,
were measured in a six-probe configuration. Current and voltage contacts were made by
attaching thin (40 µm) copper wires to the crystals with silver paste. The exposure time to
air between cleaving and mounting the samples in the cryostat was kept to a minimum of
about one hour.

High magnetic fields were produced with a Bitter magnet (Bmax = 33 T) at the High
Field Magnet Laboratory at the Radboud University in Nijmegen. The samples were
mounted on the platform of a mechanical rotator that could be cooled down to 1.7 K. The
resistance was measured using a low frequency ac-technique with a SR830 DSP lock-in
amplifier. The excitation current, I , flows in an arbitrary direction in the ab-plane and
was typically 10 µA. Measurements were conducted for two polarities of the magnetic
field, after which the longitudinal and Hall resistance were extracted by symmetrization.
The field-sweep rate amounted to 30 mT/s. By rotating the sample platform, the angular
variation of the SdH oscillations was determined. The magnetoresistance was always
measured in the transverse configuration (B ⊥ I), since the rotation axis coincides with
the direction of I .

ARPES measurements were performed at the SIS-HRPES endstation of the Swiss
Light Source using a ScientaR4000 hemispherical electron analyzer. The data presented in
this work were acquired at 16 K using 27 eV photons with linear horizontal polarization.
The samples were cleaved and measured at a pressure better than 5× 10−11 mbar and the
Fermi level position was determined using in-situ evaporated Au thin films that were in
direct contact with the sample holder.

5.3 Results and Analysis

5.3.1 Shubnikov - de Haas effect

We have measured the magnetoresistance of 10 different BSTS crystals in magnetic fields
up to 30 T, applied along the rhombohedral axis (c-axis) at 4.2 K. In Figure 5.1(a) we
show the longitudinal resistance Rxx of BSTS crystals with (x, y) = (0.50, 1.3) and
(x, y) = (0.54, 1.3) as a function of the magnetic field at T = 4.2 K and θ = 0◦. After
the initial sharp rise connected to the suppression of the weak antilocalization (WAL)
in low fields [152], the magnetoresistance increases in a quasi-linear manner without
saturation. Selected crystals showed a clear SdH effect. These were further investigated
to determine the temperature and angular variation of the SdH oscillations. While the
magnetoresistance, MR(B) = (R(B)−R(0))/R(0), typically has a magnitude of 100 %
near 30 T, the amplitude of the SdH signal is small and amounts to only 1 % of the total
resistance. After subtracting the smooth monotonic background contribution from Rxx we
obtain the SdH signal shown in Figure 5.1(b) and (c). Here we trace ∆Rxx versus 1/B,
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Figure 5.1: Panel (a): Longitudinal resistance Rxx of BSTS crystals with (x, y) =
(0.50, 1.3) and (x, y) = (0.54, 1.3) as a function of the magnetic field at T = 4.2 K and
θ = 0◦. Panel (b) and (c): Oscillatory component of the longitudinal resistance ∆Rxx plot-
ted versus 1/(B cos θ) for BSTS crystals with (x, y) = (0.50, 1.3) and (x, y) = (0.54, 1.3),
respectively, at T = 4.2 K. Here θ is the angle between the field and the normal to the sam-
ple surface (c-axis) and B cos θ is the perpendicular component of the applied magnetic
field. Curves for θ 6= 0 are offset for clarity. The positions of the minima and maxima of the
SdH oscillations, marked by the vertical dashed lines, depend solely on 1/B cos θ, which
points to the 2D nature of the Fermi surface. The insets show the fast Fourier transform of
the data at θ = 0◦.
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in order to reveal the characteristic quantum oscillation period, where ∆Rxx refers to the
difference between the oscillatory resistance in field and the smooth background. The data
with the field perpendicular to the sample surface (B ‖ c-axis, θ = 0◦) are given by the
solid black lines. The angular variation of the SdH effect measured for angles θ ≤ 60◦

provides strong evidence the oscillations can be attributed to a 2D Fermi surface, since the
positions of the minima and maxima at different θ coincide in the plots of ∆Rxx versus
1/(B cos θ) as indicated by the vertical grey dashed lines in Figure 5.1(b),(c). Here θ is
defined as the angle between the field direction and the crystallographic c-axis. We remark
that, strictly speaking, a 3D spheroidal Fermi surface (i.e. an ellipsoid of revolution)
with an aspect ratio such that the longer axis is along the reciprocal lattice vector 2π/c

could also be in agreement with the angular variation of the SdH data. However, this
possibility can safely be excluded since the calculated 3D carrier density, n3D, is at
variance with the measured Hall data (see below). The fast Fourier transforms of the data
at θ = 0◦ give the SdH frequencies F of 63±3 T and 33±3 T for (x, y) = (0.50, 1.3), and
(x, y) = (0.54, 1.3), respectively. See the insets in Figure 5.1(b) and (c). According to the
Onsager relation, the extremal cross section of the Fermi surface, Ak(EF ), is proportional
to the frequency, F , via the relation Ak(EF ) = (2πe/~)× F , where ~ and e are Planck’s
constant divided by 2π and the electron charge, respectively. Assuming a circular cross
section of the Fermi surface Ak(EF ) = πk2

F the corresponding values for the Fermi wave
numbers can be calculated for the two crystals, and come out at kF = 4.4 ×106 cm−1 and
3.2 ×106 cm−1, respectively. Next the 2D carrier density n2D can be calculated from
the non-spin degenerate relation n2D = k2

F/4π = 1.5 ×1012 cm−2 and 0.81 ×1012 cm−2,
respectively. For a spheroidal Fermi surface with an aspect ratio of 2 these values of
kF would result in a bulk carrier density n3D = (1/2) × (2kF )3/(3π2) of ∼ 1019 cm−3

assuming no spin degeneracy. This value exceeds the bulk carrier concentration calculated
from the Hall data [152] by a factor of 1000.

In order to obtain important information about the transport parameters of the 2D carri-
ers we have measured the temperature variation of the SdH effect for (x, y) = (0.50, 1.3)

and (x, y) = (0.54, 1.3). See Figure 5.2(a) and (b), respectively. From the thermal damp-
ing of the SdH oscillations one can deduce the cyclotron mass, mc, while the amplitude
of the SdH oscillations as a function of B allows one to determine the Dingle scattering
time, τD. The SdH oscillations are analyzed with the standard Lifshitz-Kosevich (LK)
expression for 2D charge carriers [156]:

∆Rxx ∝ RTRD cos[2π(
F

B
− γ)], (5.1)

where the thermal damping factor RT = αT
B
/ sinh(αT

B
) with α = 2π2kBmc/~e and

the Dingle damping factor RD = exp(−αTD/B) with the Dingle temperature TD =

~/2πkBτD. Here kB is Boltzmann’s constant and γ is the phase factor. Fits of the
measured thermal damping to the LK expression are shown in Figure 5.2(c) and (d).
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Figure 5.2: Panel (a) and (b): Oscillatory component of the longitudinal resistance ∆Rxx

plotted versus 1/B for BSTS crystals with (x, y) = (0.50, 1.3), and (x, y) = (0.54, 1.3),
respectively, at temperatures in the range 1.7-30 K as indicated, and θ = 0◦. Curves
are offset along the vertical axis for clarity. The vertical dashed lines mark the minima
and maxima in ∆Rxx. Panel (c) and (d): Thermal damping of the SdH oscillations
for (x, y) = (0.50, 1.3) and (x, y) = (0.54, 1.3), respectively. The cyclotron mass is
mc = 0.18me and 0.10me, respectively. The insets show the fit to the Dingle damping term
at T = 4.2 K with the resulting Dingle temperature TD = 21 K and 15 K, respectively.

We extract a cyclotron mass mc of 0.18me and 0.10me for (x, y) = (0.50, 1.3) and
(x, y) = (0.54, 1.3), respectively, where me is the free electron mass. Combined with the
values of kF , derived above, the effective Fermi velocity v∗F ≡ ~kF/mc is calculated and
equals 2.8 and 3.6×105 m/s, respectively. The analysis of the Dingle term is shown in
the insets to Figure 5.2(c) and (d) and results in a TD of 21 K and 15 K and a scattering
time τD of 5.8×10−14 s and 8.4×10−14 s, for (x, y) = (0.50, 1.3) and (x, y) = (0.54, 1.3),
respectively. By using these values of v∗F and τD, the mean-free path of the surface carriers,
`SdHs , can be derived from the relation `SdHs = v∗F τD and amounts to ∼16 nm and 30 nm,
respectively. Finally, the corresponding surface mobility, µSdHs = e`SdHs /~kF is calculated
to be ∼560 and 1450 cm2/Vs, respectively.

5.3.2 Landau level plot and Berry phase

Next, we extract and discuss the Berry phase of the quantum oscillations. The Berry
phase φB = π(1 − 2γ) can be obtained from the phase factor γ in Equation 5.1 and



64 Chapter 5. QOs of topological surface states in BSTS

Figure 5.3: Panel (a) and (b): Landau level plot of SdH oscillations in BSTS crystals with
(x, y) = (0.50, 1.3), and (x, y) = (0.54, 1.3), respectively. Minima (green squares) and
maxima (green circles) in ∆Rxx correspond to n and n + 1/2, respectively. In (a) and
(b) the grey solid line represents a linear fit with nx = 0.16 and −0.28, respectively. In
(a) the blue dash-dotted line displays the case of a non-ideal linear dispersion with band
parameters vF = 2.5 × 105 m/s and effective mass m∗ = 0.24me; the red-dashed line
includes the Zeeman term with gs = 70 or −54; the green dotted-straight line shows the
case of the ideal Dirac dispersion with F = 63 T. The inset presents a zoom of the LL
plot near the origin. For (x, y) = (0.54, 1.3) we did not make the full analysis based on
Equation 5.2, since we do not have access to precise values of m∗ and vF .

is π for a linear energy dispersion (γ = 0) and zero for a parabolic energy dispersion
(γ = 1/2) [157]. The standard procedure to extract the phase of the SdH oscillations
makes use of a Landau level (LL) plot, in which the LL index n is plotted as a function
of 1/B. In the ideal case n(1/B) is a linear function which extrapolates to 1/B = 0 at
the abscissa nx, where nx = 1/2 − γ. To construct the LL plot correctly, it is crucial
to assign the index n to the correct position in ∆Rxx(B). In our case, for the surface
states the Hall resistivity ρxy > ρxx, which means ∆Rxx has minima (maxima) at integer
LL indices n (n + 1/2) [156]. The corresponding LL plots for (x, y) = (0.50, 1.3) and
(x, y) = (0.54, 1.3) are shown in Figure 5.3(a) and (b), respectively. A linear least-
squares fit (grey solid lines) yields nx = 0.16 and nx = −0.28, and a finite Berry phase
φB = 0.32π and −0.56π, respectively. Clearly, these values differ from the value π
expected for topological surface states.
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A Berry phase extracted in this way that deviates from π has been reported frequently
in other SdH studies on the 3D TI family (Bi,Sb)2(Te,Se)3 [27, 28, 99, 149, 158]. However,
obtaining nx by linear extrapolation is not justified in all cases. While it is appropriate
for light-element materials, such as graphene [159], it is generally not suitable for 3D
Bi-based TIs where deviations from the linear dispersion relation, E(k), and the large
Zeeman term should be taken into account [153, 154]. We first investigate the effect of a
non-ideal-Dirac E(k). The dispersion relation E(k) for our (x, y) = (0.50, 1.3) crystal
was directly determined using ARPES. Data measured along the Γ→ K and Γ→M high
symmetry directions are shown in Figure 5.4. In order to fit the energy dispersion of the
topological surface state as accurately as possible we need to maximize the number of data
points in the occupied part of the energy spectrum. In this sense, the time-dependent energy
shift to lower energies observed in BSTS [160, 161] and other Bi-based TIs [139, 162] is
beneficial. We therefore chose to fit data acquired on a sample which has been maintained
for 8 h in a background pressure in the mid 10−11 mbar range. The data are adequately
described by the relation [30, 163]

E(k) = EDP + vF~k +
~2

2m∗
k2, (5.2)

where vF is the Fermi velocity at the Dirac point, m∗ is the effective mass, and EDP is
the binding energy of the Dirac point. A least squares fit to Equation 5.2 gives vF =

2.0× 105 m/s and m∗ = 0.24me for Γ→ K and vF = 3.0× 105 m/s and m∗ = 0.25me

for Γ → M . Since the anisotropy is small, we use in the analysis of the LL plot the
average values vF = 2.5×105 m/s and m∗ = 0.24me. Following the procedure outlined in
Ref. [153] these band parameters result in the calculated LL plot given by the dashed-dotted
blue line in Figure 5.3(a). In the high-field regime a pronounced curvature towards nx = 0

appears, and the LL plot deviates from the ideal linear dispersion relation (straight green
dashed line) with F = 63 T. Clearly, adding the parabolic term in the energy dispersion
cannot describe our data properly. Next we include the Zeeman term [153], i.e. the
cyclotron energy 1

2
~ωc → 1

2
~ωc− 1

2
gsµBB. With gs = 70 or −54, the LL plot (dashed red

line) fits our data well. Such large values of the gs factor are in-line with those reported
for other Bi-based TIs [153]. Our analysis shows that the linear extrapolation of n(1/B)

(solid grey line) does not yield a proper Berry phase. This is due to the large gs factor and
the non-ideal linear E(k). We remark that for higher n-values the red and blue LL plots
approach each other and coincide for n > 10. A linear extrapolation based on this section
of the LL plot would yield the true Berry phase. However, to detect quantum oscillations in
this regime would require mobilities as large as 2000 cm2/Vs, which these heavily alloyed
non-stoichiometric BSTS crystals prepared so far do not offer access to. We conclude
that our analysis of the LL plot including the parabolic energy term and Zeeman term
is in agreement with topological surface state. Although we did not make a similar full
analysis of the LL plot for (x, y) = (0.54, 1.3) starting from ARPES data, we note that
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Figure 5.4: Electronic band structure of a Bi1.5Sb0.5Te1.7Se1.3 sample acquired by ARPES.
The fit using Equation 5.2 (red open circles) is overlaid on the experimental data (grey-
scale). The data are along the Γ→ K (left panel) and Γ→M (right panel) high-symmetry
directions and have been acquired using 27 eV photons and linear horizontal polarization.
ARPES has been performed at 16 K.

Figure 5.5: Hall resistivity ρxy(B) of a Bi1.5Sb0.5Te1.7Se1.3 crystal of thickness 40 µm
(blue circles) measured at T = 1.7 K and θ = 0◦. The red line shows the fit based on the
two-band model described in Equation 5.3.

minor changes in bulk stoichiometry do not affect the ARPES spectra of BSTS [160].

5.3.3 Hall resistance

A full determination of the transport parameters can be made by analyzing the Hall
resistivity, ρxy. In Figure 5.5 we show ρxy for the BSTS crystal with (x, y) = (0.50, 1.3)

and thickness t = 40 µm measured up to 30 T at T = 1.7 K. Since the surface and
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bulk-carriers contribute in-parallel to the Hall voltage, we use the standard two-band
model [115] to fit the data

ρxy(B) = −B
e

(nbµ
2
b + nsµ

2
s/t) +B2µ2

bµ
2
s(nb + ns/t)

(nbµb + nsµs/t)2 +B2µ2
bµ

2
s(nb + ns/t)2

(5.3)

where nb, µb, ns, µs are the bulk carrier density, bulk carrier mobility, surface carrier
density and surface carrier mobility, respectively. Here nb and µb are fit parameters,
while ns = 1.5 × 1012 cm−2 and µs = 560 cm2 /Vs are taken from the analysis of
the SdH oscillations. As shown in Figure 5.5, the ρxy(B) curve (blue circles) is well
fitted by the model (red line) and the fit yields nb = 2.9 × 1016 cm−3 and bulk carrier
mobility µb = 15 cm2/Vs. The surface, ρs, and bulk resistivity, ρb, are related via
ρs = ρsheett = t/ensµs with ρsheet the surface sheet resistivity and ρb = 1/enbµb, which
yields ρs = 29 Ωcm and ρb = 14 Ωcm. Therefore, the surface contribution accounts for
32 % of the total sample conductance according to the formula ρ−1

s /(ρ−1
s + ρ−1

b ), which is
larger than that reported in Bi2Te3 [149], Bi2Te2Se [27] and Bi1.5Sb0.5Te1.7Se1.3 [30].

5.4 Summary

A magnetotransport study was carried out on low-carrier crystals of the topological insulator
Bi2−xSbxTe3−ySey with (x, y) = (0.50, 1.3) and (x, y) = (0.54, 1.3). In high magnetic
fields Shubnikov - de Haas oscillations were observed originating from 2D surface states
as demonstrated by the angular variation when tilting the sample surface with respect
to the field. For (x, y) = (0.50, 1.3) the Landau level plot was analyzed with a model
incorporating a non-ideal Dirac dispersion that was measured directly using ARPES, and a
Zeeman coupling-term with large gs-factor. These effects lead to a shift in the apparent
Berry phase extracted from the extrapolated x-axis crossing of the linear Landau level
plot. Based on the band parameters deduced from ARPES measurements carried out on
a sample prepared from the same single-crystalline batch, the SdH oscillations can be
attributed to topological surface states with an electron spin g-factor gs = 70 or −54 as
fitting parameter in the LL plot model. By combining the carrier density and mobility for
the topological surface states from the SdH data with a two-band (bulk + surface) model for
the Hall resistivity, the surface contribution to the total electrical transport can be extracted
and amounts to around 32 % in our Bi1.5Sb0.5Te1.7Se1.3 crystal with a thickness of 40 µm.





Chapter 6

Superconductivity and magnetic
order in the non-centrosymmetric

Half Heusler compound ErPdBi

We report superconductivity at Tc = 1.22 K and magnetic order at TN = 1.06 K in the
semi-metallic noncentrosymmetric Half Heusler compound ErPdBi. The upper critical
field, Bc2, has an unusual quasi-linear temperature variation and reaches a value of 1.6 T
for T → 0. Magnetic order is found below Tc and is suppressed at BM ∼ 2.5 T for T → 0.
Since Tc ' TN , the interaction of superconductivity and magnetism is expected to give
rise to a complex ground state. Moreover, electronic structure calculations show ErPdBi
has a topologically nontrivial band inversion and thus may serve as a new platform to study
the interplay of topological states, superconductivity and magnetic order.
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6.1 Introduction

The ternary compound ErPdBi belongs to the Rare Earth palladiumbismuthide (REPdBi)
series, which is part of the large family of Half Heusler compounds that crystallize in a
cubic structure with 1:1:1 composition. Half Heusler compounds attract ample attention
as multifunctional materials in the fields of spintronics and thermoelectricity, but also
as tunable laboratory tools to study a wide range of intriguing physical phenomena,
such as half metallic magnetism, giant magnetoresistance and Kondo and heavy fermion
physics [33]. More recently, a strong interest in Half Heusler compounds with significant
spin-orbit coupling has been generated by first-principle calculations [34, 35, 164] that
predict an inverted band order, which may give rise to topological quantum states because
of the non-trivial Z2 topology [1, 3]. Prominent candidate materials are the TPtBi and
TPdBi series, where T is Y or Sc or a non-magnetic RE element. Interestingly, some of
the platinumbismuthides that exhibit band inversion have been reported to superconduct,
which makes them promising candidates for topological superconductivity: LaPtBi (Tc =

0.9 K [52]), YPtBi (Tc = 0.77 K [49, 51]) and LuPtBi (Tc = 1.0 K [53]). Moreover,
since the crystal structure lacks inversion symmetry, unconventional Cooper pair states,
notably mixed even and odd parity states, are predicted to make up the superconducting
condensate [165]. This provides a strong motivation to search for similar phenomena in
the palladiumbismuthides.

The REPdBi compounds crystallize, just like the REPtBi series, in the cubic structure
with the non-centrosymmetric F43m space group [166]. The magnetic and transport
properties of the REPdBi series (RE= Er, Ho, Dy, Gd and Nd) were first reported in
Refs. [167–169]. Susceptibility data, taken on arc-melted polycrystalline samples, showed
antiferromagnetic order for the Ho, Dy, Gd and Nd compounds with Néel temperatures,
TN , of 2, 3.5, 13 and 4.2 K, respectively. ErPdBi did not show magnetic order down to the
lowest temperature measured, T = 1.7 K. The susceptibility, χ(T ), of ErPdBi follows the
Curie-Weiss law with an effective moment µeff = 9.2 µB , close to the Er3+ free ion value
of 9.58 µB, and a paramagnetic Curie temperature ΘP = −4.6 K [167, 168]. Transport
measurements revealed a semi-metallic-like behaviour with a carrier density n(4 K) =

6.7 × 1019 cm−3. ErPdBi received furthermore interest because of its thermoelectric
effects [170, 171].

Here we report electrical transport, ac-susceptibility and dc-magnetization measure-
ments on ErPdBi single crystals that provide solid evidence for superconductivity at 1.22 K
and magnetic order at 1.06 K. The combination of superconductivity and magnetic order is
unusual. Moreover, electronic structure calculations show ErPdBi has an inverted band
order and thus should harbor topological quantum states.
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6.2 Experimental

A single crystalline batch of ErPdBi was prepared out of Bi flux. As starting materials
served the elements Er, Pd and Bi with a purity of 3N5, 4N and 5N, respectively. An ingot
of ErPdBi was prepared by arc-melting and placed in an alumina crucible with excess Bi
flux. The crucible and contents were heated in a quartz tube under a pressure of 0.3 bar
high-purity Argon gas to 1150 ◦C and kept at this temperature for 36 h. Then the tube was
slowly cooled to 500 ◦C at a rate of 3 ◦C per hour to form the crystals. Scanning Electron
Microscopy and Electron Probe Micro Analysis confirmed the main phase is ErPdBi with
composition 1:1:1. Bi precipitates are found in the form of thin lines on the surface of
the crystals. Powder X-ray diffraction confirmed the F43m space group and the extracted
lattice parameter, a = 6.595 Å, is in perfect accord with the literature [166]. The Bi
precipitates give rise to additional tiny peaks in the diffraction patterns. From their intensity
we estimate a Bi volume fraction of about 4%. Single crystals, with typical dimensions
3× 2× 0.3 mm3, were carefully cut from the ingot by spark erosion thereby avoiding the
Bi precipitates. Their single-crystalline nature was checked by Laue backscattering. After
cutting, the surface of the samples was cleaned by polishing. Magnetic characterization
in the temperature interval 1.8-300 K was made in a Physical Property Measurements
System (Quantum Design). The Curie-Weiss behaviour was confirmed and the values
µeff = 9.54 µB and ΘP = −3.5 K are close to the ones reported in Refs. [167, 168]. The
Hall effect and resistivity were measured using a MaglabExa system (Oxford Instruments)
for T = 4 - 300 K. Resistance and ac-susceptibility measurements were made in a 3He
refrigerator (Heliox, Oxford Instruments) for T = 0.24 − 10 K using a low-frequency
(f ≤ 313 Hz) lock-in technique and low excitation currents (I ≤ 100 µA). Additional
low-temperature dc-magnetization and ac-susceptibility measurements were made using a
SQUID magnetometer, equipped with a miniature dilution refrigerator, developed at the
Néel Institute.

6.3 Results

In Figure 6.1 we show the resistivity ρ(T ) of a flux grown single crystal of ErPdBi (sample
#1). The overall behaviour is in good agreement with the data in the literature with a
broad maximum centered at 50 K, rather than 140 K [169]. The hole carrier concentration,
calculated from the low-field linear Hall resistance, equals nh = 7.4 × 1018 cm−3 at
T = 4 K (see inset), which is a factor 10 lower than reported in Ref. [169]. These transport
parameters confirm semimetallic-like behaviour. At low temperatures the drop to resistance
R = 0 signals the transition to the superconducting state.

In Figure 6.2 we show ac-susceptibility data taken on the same ErPdBi sample that
reveal superconductivity occurs below Tc = 1.22(2) K. The superconducting transition
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Figure 6.1: Resistivity and carrier concentration (inset) versus temperature of ErPdBi
sample #1.

appears as a large diamagnetic contribution, which corresponds to a screening fraction
of ∼ 92% of the ideal value χM = −1/(1 − N) (here N ' 0.1 is the demagnetization
factor). χac data taken on a second sample (#2) with N ' 0.15 in a different experimental
set-up are reported in the lower inset of Figure 6.2. For this sample the screening fraction
attains a value of ∼ 90%. It should be noted that in both experiments a decrease of
the χac signal becomes visible already at a higher temperature, 1.72(2) K (as indicated
by the grey arrows in Figure 6.2). This signal we attribute to an impurity phase with
a screening fraction of ∼ 8 − 10%. A large diamagnetic signal is normally a good
indicator of bulk superconductivity. Solid proof may be obtained by the observation of
flux expulsion. In the upper inset of Figure 6.2 we show the dc-magnetization measured
in a field of 20 Oe after cooling in zero field. Upon warming, the signal is dominated
by screening effects due to ErPdBi (up to 1.22 K) and the impurity phase (up to 1.72 K).
Upon cooling in field, flux expulsion is predominantly found at Tc = 1.22 K. The change
in magnetization corresponds to a Meissner fraction of ∼ 15 %. This confirms the bulk
origin of superconductivity in ErPdBi.

The nature of the impurity phase remains to be solved. Small amounts of Bi inclusions
in the form of precipitates might be present in the crystals, but crystalline Bi does not
superconduct. Amorphous Bi, e.g. prepared as thin film, superconducts at Tc ∼ 6 K [172],
a temperature much higher than observed here. Among the binary Bi-Pd alloys, the only
likely candidate is α-Bi2Pd, which is reported to superconduct at 1.7 K [172]. However,
if present in our samples, the impurity amount is below the detection limit of the X-ray
powder diffraction pattern (∼ 2 %). We remark that in Refs. [169, 170] a pronounced drop
in the resistivity of arc-melted ErPdBi samples was reported at 7 K, together with a field
depression that mimics superconductivity. However, no corresponding diamagnetic signal
was observed and bulk superconductivity at 7 K was discarded.

χac-data taken upon cooling in applied magnetic fields show the diamagnetic screening



6.3. Results 73

Figure 6.2: AC susceptibility of ErPdBi (sample #1) in zero and magnetic fields up to
2.5 T as indicated. The data were taken while cooling in field. Curves are displaced
vertically to prevent overlap. The driving field is 0.026 Oe for B ≤ 0.4 T and 0.26 Oe for
B ≥ 0.6 T. The superconducting transition temperature of ErPdBi and the impurity phase
are indicated by black and grey arrows. For B ≥ 0.6 T the weak local maximum locates
the magnetic transition at TM,χac (green arrows). Lower inset: χ′ and χ′′ of ErPdBi
(sample #2) in a driving field of 0.027 Oe. Upper inset: Magnetization measured in a field
of 20 Oe applied after cooling in zero field; data taken upon warming show screening
effects, while data taken upon cooling show flux expulsion (see text).

signal is rapidly lost (see Figure 6.2). Surprisingly, in the field range 0.6 T ≤ B < 2.5 T a
pronounced structure appears in χac(T ) at temperatures labeled TM,χac . Such a (relative)
maximum, albeit weak, normally indicates the presence of a magnetic transition. This
is corroborated by the field variation of TM,χac , which we will discuss after presenting
low-temperature resistivity data, ρ(T ).

The superconducting transition in ρ(T ) in zero and applied magnetic fields is reported
in Figure 6.3. In zero field the superconducting transition is due to the impurity phase,
where we remark that the transition temperature, 1.74(2) K, determined by the midpoint,
nicely coincides with the onset temperature, 1.72(2) K, in the χac-data. In a magnetic
field superconductivity of the impurity phase is depressed at the fast rate dTc/dB = −4.4

K/T (see Figure 6.4). Consequently, for B ≥ 0.1 T and T . 1.2 K the superconducting
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Figure 6.3: Resistivity of ErPdBi in zero and applied magnetic fields, from right to left:
0, 0.025, 0.05, 0.075, 0.10, 0.13, 0.16, 0.2 T and then up to 2.4 T in steps of 0.1 T. Inset:
dρ/dT versus T in B = 1.0 T. The extrema locate Tc and TM,R.

transition in ρ(T ) is due to ErPdBi. At the same time, ρ(T ) obtains an unusual round shape
around Tc. We have determined the upper critical field Bc2 (or Tc(B)) by locating the
maximum in dρ/dT measured at fixed magnetic field, as shown for example for B = 1.0 T
in the inset of Figure 6.3. The results are traced in the phase diagram Figure 6.4. Bc2(T )

of ErPdBi displays an unusual quasi-linear temperature variation, which extrapolates to
Tc = 1.24(2) K in zero field, close to the onset temperature Tc = 1.22(2) K extracted from
χac.

The magnetic transition is also detected in the resistance by the local maximum in
dρ/dT , as shown in the inset of Figure 6.3 (temperature labeled TM,R). We have traced
TM,R(B) and TM,χac(B) in the phase diagram Figure 6.4. Both temperatures track the
same phase boundary. The location of weak maxima (see Figure 6.4) observed in the
dc-magnetization (data not shown) for sample #2 confirm this.

The magnetic transition is almost certainly to an antiferromagnetic (AFM) state with
Néel temperature TN . For TN = TM,R the phase boundary obeys the phenomenological
order parameter function BM(T ) = BM(0)(1− (T/TN)α)β with TN = 1.06 K, BM(0) =

2.5 T, α = 2 and β = 0.4. The latter value is close to the value β = 0.38 expected for the
3D Heisenberg antiferromagnet [173]. The phase boundaries located by the transport and
magnetic data are closely linked, since they all extrapolate to TN = 1.06 K for B → 0.
Local moment AFM order is widely present in the REPdBi series [167, 168]. Strong
support for an antiferromagnetic groundstate in ErPdBi is furthermore found in the De
Gennes scaling for the heavy rare earth palladium bismuthides (see inset Figure 6.4):
TN ∝ (gJ − 1)2J(J + 1) with gJ the Landé factor (see e.g. [174]. Neutron diffraction
and/or NMR experiments would be most welcome to investigate the nature of the magnetic
order on the microscopic scale.
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Figure 6.4: Superconducting (SC) and magnetic (AFM) phase diagram of ErPdBi. Closed
blue squares: superconducting transition temperature, Tc, determined by extrema in dρ/dT ;
solid blue line: Bc2(T ) WHH model curve (see text) with Borb

c2 (0) = 1.13 T. Grey triangles
and dashed grey line: Tc(B) of the impurity phase. Closed circles: TN = TM,R determined
by extrema in dρ/dT ; open circles and stars: (T,B)−location of weak maximum in χac(T )
(TM,χac) and dc-magnetization (sample #2); solid red line: magnetic order parameter fit
with TN = 1.06 K at B = 0 T (see text). Inset: De Gennes scaling plot for Er, Ho and
DyPdBi (see text).

6.4 Discussion

The combination of local-moment antiferromagnetism and superconductivity is unusu-
al. In general local-moment AFM order and superconductivity tend to compete for the
ground state. However, in ErPdBi TN ' Tc, which tells us both phenomena have similar
energy scales. Given the lack of inversion symmetry and the expected unconventional
Cooper-pair state [175], this could give rise to an interesting interplay of superconductivity
and magnetism, and a complex ground state. Experimental signatures for this are the
unusual rounded shape of the superconducting transition in ρ(T ) and the rapid loss of
the diamagnetic screening signal in field. Possibly AFM order and superconductivity
occupy different sample regions. In order to answer these important questions muon spin
relaxation experiments would be very helpful, since these permit one to probe the different
volume fractions.

Several other Erbium based antiferromagnetic superconductors have been reported
in the literature. In the Chevrel phases ErMo6S8 and ErMo6Se8 [176] AFM order and
superconductivity compete, while in the borocarbide ErNi2B2C [177] and the Heusler phase
ErPd2Sn [178] AFM order and superconductivity coexist. Coexistence of superconductivity
and AFM order is also found in a number of non-centrosymmetric materials [175]. A
prominent example is CePt3Si with Tc = 0.75 K and TN = 2.2 K [179]. Interestingly,
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Figure 6.5: Bulk band structure of half Heusler ErPdBi in the fcc Brillouin zone. The red
bands are Γ8 and Γ7 states and blue is the Γ6 state. The Fermi energy is shifted to zero
(solid horizontal line). The dashed-horizontal line illustrates the experimental Fermi level
with a small hole-pocket at the Γ point. Er-4f states were treated as core electrons.

CePdBi, which has the same crystal structure as ErPdBi, also undergoes a magnetic
(TM = 2 K) and superconducting transition (Tc = 1.4 K) [180]. However, the experiments
were carried out on arc-melted polycrystals and the weak diamagnetic screening (8 % of
the sample volume) was hitherto associated with a disordered phase.

The upper critical field of ErPdBi, reported in Figure 6.4, shows an unusual linear
temperature variation just like for YPtBi [49], where it was taken as evidence for an
odd-parity component in the superconducting order parameter. For ErPdBi, the rounded
transitions in ρ(T ) and the presence of AFM order, make the determination of Bc2(T )

difficult. In the limit T → 0 Bc2 extrapolates to 1.6 T. Using this value and with help of the
relation Bc2 = Φ0/2πξ

2, where Φ0 is the flux quantum, we calculate a superconducting
coherence length ξ = 14 nm. Preliminary magnetization measurements show the lower
critical field Bc1 is very small, and a conservative upperbound is 0.0002 T, which allows
an estimation of the Ginzburg-Landau parameter κ = λ/ξ via the relation Bc2/Bc1 =

2κ2/lnκ, where λ is the penetration depth. For T → 0, we obtain κ ≥ 140 and λ ≥ 448 nm.
In Figure 6.4 we also compare the measured Bc2(T )-values with the model curve for a
weak-coupling spin-singlet superconductor in the clean limit with orbital limiting field
(Werthamer-Helfand-Hohenberg [WHH] model [181]). The zero temperature orbital
critical field is given by Borb

c2 = 0.72× Tc |dBc2/dT |Tc and amounts to 1.13 T. Clearly, the
Bc2(T )-values determined from the resistance data exceed the model curve values when
T/Tc . 0.5. This is in line with an unconventional Cooper pair state [49].
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6.5 Electronic structure

In order to understand the electronic properties of ErPdBi, we performed ab initio band
structure calculations based on the density-functional theory within the generalized gradient
approximation [182]. We adopted the Half Heusler structure as determined by experiments.
The magnetic susceptibility that follows a Curie-Weiss law [167, 168] reveals the Er-4f
electrons are well localized and hardly hybridize with Pd and Bi states [183]. As a
consequence, the Er-4f states are not relevant to the low energy states near the Fermi
energy (EF ). Therefore, we placed the Er-4f electrons inside the core and represented
all the core electrons by the projector-augmented-wave potential [184, 185]. Spin-orbit
coupling was included in all calculations.

The calculated bulk band structure of ErPdBi is shown in Figure 6.5. The lowest
conduction and highest valence bands with Γ8 symmetry (j = 3/2) are degenerate at
EF at the Γ point due to the cubic symmetry, resulting in a zero-gap semimetal. This
semimetallic feature is consistent with the magnetotransport measurements (see Fig. 1).
The spin-orbit coupling split-off Γ7 state (j = 1/2) is below the Γ6 state. One can
clearly see a band inversion between the Γ8 and Γ6 bands, where the Γ8 bands are mainly
contributed by Pd-4d and Bi-6p orbitals, while Γ6 by Pd-5s and Bi-6s orbitals. Regardless
of magnetic moments from the Er-4f states, this band inversion means that (undoped)
ErPdBi is a topological insulator, similar to HgTe and other Half Heusler topological
insulators [34, 35, 164]. Robust topological states are expected to exist on the surface.
More interestingly, the magnetism from Er-4f states can interplay with these topological
surface states and generate exotic magnetoelectric effects [186]. Since the ErPdBi crystals
are slightly p-doped as concluded from the Hall data ( Figure 6.1), the real EF is expected
to lie marginally below the Γ8 degenerate point with a small hole-pocket, as illustrated in
Figure 6.5. The bulk superconductivity can be attributed to these heavy-hole Γ8 states.

6.6 Summary

Electrical transport, ac-susceptibility and dc-magnetization measurements provide solid
evidence for superconductivity at 1.22 K and antiferromagnetic order at 1.06 K in the non-
centrosymmetric Half Heusler compound ErPdBi. The combination of superconductivity
and AFM order is unusual. Possibly, the ordering phenomena occur in different electron
subsystems: superconductivity in the low-carrier hole band and local moment magnetism
due to Er 4f -moments. However, since TN ' Tc, and ErPdBi lacks inversion symmetry,
the interplay of superconductivity and magnetism might give rise to a complex ground
state. Electronic structure calculations show ErPdBi has an inverted band order and thus
may harbor topological quantum states. We conclude the Half Heusler REPdBi series
provides a unique opportunity to investigate the interplay of antiferromagnetic order,
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superconductivity and topological quantum states.

6.7 Further developments

After the work above was published, two other papers appeared that also reported the
transport and magnetic properties of ErPdBi [46, 187]. Nakajima et al. [46] found su-
perconductivity in ErPdBi with Tc around 1.2 K, by means of electric resistance and AC
susceptibility measurements, and antiferromagnetic order with TN = 1.0 K by means
of specific heat and magnetization measurements. These results confirm our work. In
Ref. [187], antiferromagnetic order with a somewhat higher TN = 1.2 K was found and an
onset for superconductivity at Tc = 1.6 K using AC susceptibility. Also, magnetoresistance
measurements in high magnetic fields up to 33 T revealed Shubnikov-de Haas (SdH)
oscillations, with a frequency of 21 T. This points to a low carrier concentration.

In 2014 superconductivity was reported for the nonmagnetic rare-earth palladiumbis-
muthide (REPdBi) LuPdBi with Tc in the range 1.6 - 1.9 K [46,54,55]. A still unexplained
result is that only Xu et al. [54] report the observation of a sizeable transition at Tc = 1.45 K
in the specific heat, whereas the other groups did not [46, 55]. Xu et al. [54] and Pavlosiuk
et al. [55] also analyzed magnetoresistivity data with the weak antilocalization effect
(WAL), from which they claimed the presence of topological surface states. However, the
prefactor α of the Hikami-Larkin-Nagaoka formula (see section 3.3) for the WAL in both
papers is around 105 larger than that expected for a topological surface state. This puts
serious doubts on this interpretation.

In 2015 we discovered superconductivity in the antiferromagnet (TN = 2.0 K) HoPdBi [44].
AC susceptibility measurements provides solid evidence for bulk superconductivity below
Tc = 0.75 K. Electronic structure calculations classified HoPdBi as a new topological
semimetal, with a non-trivial band inversion of 0.25 eV. Superconductivity and antiferro-
magnetic order were confirmed in subsequent papers by Nakajima et al. and Pavlosiuk et

al. [45,46]. Apparently, ErPdBi and HoPdBi are both highly interesting laboratory tools to
study the interplay of antiferromagnetic order, superconductivity and topological quantum
states.

Finally, Nakajima et al. [46] showed that the coexistence of superconductivity and
magnetism is a general feature of the REPdBi (RE = Sm, Gd, Tb, Dy, Ho, Er, Tm)
compounds (with the exception of RE = Gd). For the compounds with a lattice parameter
smaller than 6.62 Å the band structure is inverted near the Γ point, and consequently
REPdBi (RE = Ho, Er, Tm, and Lu) are predicted to harbor topological surface states.
Superconductivity is ascribed to the conduction electrons due to the Bi 6p band and Pd 4d
band. On the other hand, the effective moments deduced from the magnetic susceptibility
are all close to the free ion value, which strongly suggests the magnetism is due to local
moments. The magnetic structure was investigated by neutron diffraction for DyPdBi [46]
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Figure 6.6: Superconducting transition temperature Tc and antiferromagnetic transition
temperature TN plotted as a function of de Gennes factor for REPdBi (RE = Y, Sm, Gd,
Tb, Dy, Ho, Er, Tm, and Lu). Tρc (blue circles), Tχc (blue diamonds) and TN (red triangles)
were determined from electric resistivity, AC susceptibility, and DC magnetic susceptibility,
respectively. Figure taken from Ref. [46]

and HoPdBi [45]. The structure is type II antiferromagnet with a propagation vector of [1/2,
1/2, 1/2] doubling all three crystallographic axes. To illustrate the relationship between
superconductivity and antiferromagnetism, Tc and TN were plotted as a function of the de
Gennes factor (See Figure 6.6). As the Néel temperature TN increases with the de Gennes
factor, the superconducting transition temperature Tc decreases, which indicates that the
superconductivity and antiferromagnetism compete with each other.





Chapter 7

Rotational symmetry breaking in
the topological superconductor

SrxBi2Se3 probed by upper-critical
field experiments

Recently it was demonstrated that Sr intercalation provides a new route to induce supercon-
ductivity in the topological insulator Bi2Se3. Topological superconductors are predicted
to be unconventional with an odd parity pairing symmetry. An adequate probe to test
for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS
layered superconductorBc2 shows an anisotropy when the magnetic field is applied parallel
and perpendicular to the layers, but is isotropic when the field is rotated in the plane of
the layers. Here we report measurements of the upper critical field of superconducting
SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport
measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the
basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be ex-
plained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced
by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional
superconductivity with an odd-parity spin-triplet Cooper pair state (∆4-pairing) recently
proposed for rhombohedral topological superconductors, or might have a structural nature,
such as self-organized stripe ordering of Sr atoms.
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7.1 Introduction

Currently, topological insulators (TIs) are at the focus of condensed matter research,
because they offer unprecedented possibilities to study novel quantum states [72, 188, 189].
3D TIs are bulk insulators with a non-trivial topology of the electron bands that gives rise
to surface states at the edge of the material. The gapless surface states have a Dirac-
type energy dispersion with the spin locked to the momentum and are protected by
symmetry. This makes TIs promising materials for applications in fields like spintronics
and magnetoelectrics [188,189]. The concept of a TI can also be applied to superconductors
(SCs), where the superconducting gap corresponds to the gap of the band insulator [57,190].
Topological superconductors are predicted to be unconventional, with a mixed even and
odd parity Cooper pair state [191, 192]. Much research efforts are devoted to 1D and 2D
SCs, where Majorana zero modes exist as protected states at the edge of the SC [148, 193].
Majorana zero modes with their non-Abelian statistics offer a unique platform for future
topological quantum computation devices [129]. Prominent candidates for 3D topological
SC are the Cu intercalated TI Bi2Se3 [59, 60], the doped topological crystalline insulator
Sn1−xInxTe [194] and selected topological half-Heusler compounds [46, 51, 195].

Among the 3D topological superconductors, CuxBi2Se3, which has a SC transition
temperature Tc = 3 K for x = 0.3 [59, 60], is the most intensively studied material.
ARPES (Angle Resolved PhotoEmission Spectroscopy) experiments conducted to study
the bulk and surface states reveal that the topological character is preserved when Bi2Se3

is intercalated with Cu [196]. By evaluating the topological invariants of the Fermi surface,
CuxBi2Se3 is expected to be a time-reversal invariant fully-gapped odd-parity topological
SC [191, 192]. This was put on a firmer footing by a two-orbital pairing potential model
where odd-parity SC is favoured by strong spin-orbit coupling [197]. Several experiments
have been interpreted in line with topological SC. The specific heat shows a full SC
gap [60]. The upper critical field exceeds the Pauli limit and has a temperature variation
that points to spin-triplet SC [49]. Much excitement was generated by the observation
of a zero-bias conductance peak in point contact spectroscopy, that was attributed to a
Majorana surface state [198]. However, STS (Scanning Tunneling Spectroscopy) showed
that the density of states at the Fermi level is fully gapped without any in-gap states [199].
On the other hand, the superconducting state shows a large inhomogeneity [199] and the
superconducting volume fraction depends on quenching conditions [200]. Consequently,
the issue of topological SC in CuxBi2Se3 has not been settled and further experiments are
required, as well as new materials.

Very recently it has been demonstrated that Sr intercalation provides a new route to
induce superconductivity in Bi2Se3 [61]. Resistivity and magnetization measurements
on SrxBi2Se3 single crystals with x = 0.06 show Tc = 2.5 K. The SC volume fraction
amounts to 90 % which confirms bulk SC. By optimizing the Sr content a maximum Tc of
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2.9 K was found for x = 0.10 [201]. The topological character of Bi2Se3 is preserved upon
Sr intercalation. ARPES showed a topological surface state well separated from the bulk
conduction band [202, 203]. Based on the first measurements of the electronic parameters
in the normal and SC states, and the close analogy to CuxBi2Se3, it has been advocated
that SrxBi2Se3 is a new laboratory tool to investigate topological SC [61, 201].

Here we report a study of unusual basal-plane anisotropy effects in the upper critical
field, Bc2, of SrxBi2Se3. Bi2Se3 crystallizes in a rhombohedral structure with space group
R3m. It is a layered material and Sr is intercalated in the Van der Waals gaps between
the quintuple Bi2Se3 layers [61]. For a standard BCS (Bardeen, Cooper, Schrieffer) lay-
ered SC the anisotropy of Bc2 is expressed by the parameter γan = B

‖
c2/B

⊥
c2, where B‖c2

and B⊥c2 are measured with the B-field parallel and perpendicular to the layers, respec-
tively [204]. Whereas B‖c2 is normally isotropic, SrxBi2Se3 presents a unique exception.
Field-angle-dependent magnetotransport experiments demonstrate a large two-fold basal-
plane anisotropy of Bc2, with Ba

c2 = 7.4 T and Ba∗
c2 = 2.3 T for x = 0.15 at T/Tc = 0.1

(Tc = 3.0 K), where a and a∗ are orthogonal directions in the basal plane. This large effect
cannot be explained with the anisotropic effective mass model [204, 205] or the variation
of Bc2 caused by flux flow [206]. The rotational symmetry breaking of Bc2 indicates
unconventional superconductivity [125, 207], or might have a structural nature, such as
preferential ordering of Sr atoms.

7.2 Experimental

Single crystals SrxBi2Se3 with x = 0.10 and x = 0.15 were prepared by melting high-
purity elements at 850 ◦C in sealed evacuated quartz tubes, followed by slowly cooling
till 650 ◦C at the rate of 3 ◦C/hour. Powder X-ray diffraction confirms the R3m space
group (see Section 2.2). Laue back-scattering diffraction confirmed the single-crystallinity
and served to identify the crystal axes a and a∗. Thin bar-like samples with typical
dimensions 0.3×1.5×3 mm3 were cut from the bulk crystal for the transport measurements.
Magnetotransport experiments were carried out in a PPMS-Dynacool (Quantum Design) in
the temperature range from 2 K to 300 K and magnetic fields up to 9 T and in a 3-Helium
cryostat (Heliox, Oxford Instruments) down to 0.3 K and fields up to 12 T. The resistance
was measured with a low-frequency ac-technique in a 4-point configuration with small
excitation currents, I , to prevent Joule heating (I = 0.5-1 mA in the PPMS and 100 µA
in the Heliox experiments). The current was applied in the basal plane along the long
direction of the sample. For in-situ measurements of the angular magnetoresistance the
crystals were mounted on a mechanical rotator in the PPMS and a piezocrystal-based
rotator (Attocube) in the Heliox. The samples were mounted such that the rotation angle
θ ' 0◦ corresponds to B ⊥ I . Care was taken to align the a-axis with the current direction,
but a misorientation of several degrees can not be excluded.
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7.3 Results

The resistivity, ρ(T ), of our SrxBi2Se3 crystals with x = 0.10 and x = 0.15 shows a
metallic temperature variation with superconducting transition temperatures Tc of 2.8 K
and 3.0 K, respectively, see Figure A.1 in Appendix A. The SC volume fractions of
the crystals measured by ac-susceptibility amount to 40 % and 80 %, respectively. In
Figure 7.1 we show the angular variation of the resistance, R(θ), measured in a fixed field
B = 0.4 T directed in the basal plane (aa∗-plane), in the temperature range 2-3 K around
Tc (Tc = 2.8 K at B = 0 T), for x = 0.10. Rather than attaining a constant value, the
curves show a pronounced angular variation which demonstrates that Bc2(T ) (or Tc(B)) is
field-angle dependent. For instance, at 2.5 K and 0.4 T (violet symbols) the sample is in
the normal state at θ = 3◦ and superconducts (R = 0) at 93◦. By raising the temperature
from 2 K to 3 K SC is smoothly depressed for all field directions. The data show a striking
two-fold symmetry, which is most clearly demonstrated in a polar plot (Figure 7.2). We
remark, the same two-fold anisotropy is observed in crystals with x = 0.15. In the top
panel of Figure 7.1 we show R(θ) in the normal state measured in 8 T for x = 0.10. The
data have been symmetrized after measuring R(θ) for opposite field polarities to eliminate
a small Hall component. R(θ) in the normal state shows the same two-fold symmetry as in
Figure 7.1(a). The variation in R(θ) is small and amounts to 3 % in 8 T. The data follow
a sin θ dependence, which tells us the variation is due to the classical magnetoresistance
related to the Lorentz force FL = BI sin θ, where I is the transport current that flows in
the basal plane. R(θ) is minimum in the longitudinal case (B ‖ I) and maximum in the
transverse case (B ⊥ I).

In Figure 7.3 we report Bc2(T ) for two single crystals measured with the B-field
along the orthogonal directions in the hexagonal unit cell. The data points are obtained by
measuring the superconducting transition in R(T ) in fixed fields, where Tc is identified
by the 50 % drop of R with respect to its value in the normal state (see Appendix A).
In determining the values of Bc2 we did not correct for demagnetization effects, since
the demagnetization factors calculated for our crystals are small (see Appendix A). As
expected from the data in Figure. 7.1, we observe a large difference between Ba

c2 and
Ba∗
c2 , with an in-plane anisotropy parameter γanaa∗ = Ba

c2/B
a∗
c2 of 6.8 (at 1.9 K) and 2.6 (at

0.3 K) for x = 0.10 and x = 0.15, respectively. For both crystals Ba∗
c2 ≈ Bc

c2. Obviously,
the Bc2 ratio γan for the field ‖ and ⊥ to the layers depends on the field angle and ranges
from 1.2 to 3.2 for x = 0.15. In Ref. [201] a value for γan of 1.5 is reported, whereas
from the data in Ref. [61] we infer a value of 1. In the top panels of Figure 7.3 we show
ρ(B) measured along the a, a∗ and c axis at T = 2.0 K and T = 0.3 K for x = 0.10

and x = 0.15, respectively. The Bc2(T ) values are determined by the midpoints of the
transitions to the normal state, and are indicated by open symbols in the lower panels. The
agreement between both methods (field sweeps and temperature sweeps) is excellent. For
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Figure 7.1: Angular variation of the resistance of Sr0.10Bi2Se3. Lower panel: Resistance
of Sr0.10Bi2Se3 as a function of angle θ at B = 0.4 T and temperatures between 2.0 K
(bottom) and 3.0 K (top). The angle θ = 3◦ corresponds to B ⊥ I and θ = 93◦ to B ‖ I as
indicated by arrows. The current direction is along the a-axis, with a precision of several
degrees. The data are measured with increasing angle, and reproduce when the rotation
direction is reversed, apart from a small backlash in the rotator of 2◦. Upper panel: R(θ)
in the normal state at T = 3.0 K and B = 8 T. The solid line shows R(θ) can be described
by a sin θ function.

the x = 0.15 sample we see a remarkable broadening for B ‖ a. The initial small increase
of ρ(B) between 4 and 6 T is most likely related to a sample inhomogeneity, because a
similar tail is also observed in the R(T ) data (see Appendix A).

In Figure 7.4 we show the angular variation of the upper critical field, Bc2(θ). For
this experiment the crystals are placed on the rotator and the field is oriented in the basal
plane. The data points are obtained as the midpoints of the transitions to the normal state
of the R(B) curves measured at temperatures of 2 K for x = 0.10 and of 0.3 K and 2 K for
x = 0.15 (see Figure A.4 in Appendix A). All data sets show the pronounced two-fold
basal-plane anisotropy of Bc2, already inferred from Figures 7.1 and 7.2.
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Figure 7.2: Polar plot of the resistance of Sr0.10Bi2Se3. Resistance of Sr0.10Bi2Se3 as a
function of angle θ in a magnetic field of 0.4 T and temperatures ranging from 2.0 K to
3.0 K presented in a polar plot. The angle θ = 3◦ corresponds to B ‖ a∗ ⊥ I , while
θ = 93◦ corresponds to B ‖ a ‖ I .

7.4 Discussion

Having conclusively established the two-fold anisotropy of Bc2 in the basal plane, we now
turn to possible explanations. A first explanation could be a lowering of the symmetry
caused by a crystallographic phase transition below room temperature. However, the
powder X-ray diffraction patterns measured at room temperature and T = 10 K are
identical (see Figure 2.5 in Section 2.2). Moreover, the resistivity traces (T = 2− 300 K,
Figure A.1) and the specific heat (T = 2−200 K, Figures A.5) all show a smooth variation
with temperature and do not show any sign of a structural phase transition (see Appendix
A). We therefore argue our crystals keep the R3m space group at low temperatures.

A second explanation for breaking the symmetry in the basal plane could be the
measuring current itself. Since the current flows in the basal plane it naturally breaks the
symmetry when we rotate the field in the basal-plane. Indeed Bc2 is largest for B ‖ I and
smallest for B ⊥ I . In the latter geometry, and for large current densities, the Lorentz
force may cause flux lines to detach from the pinning centers, which will lead to a finite
resistance, a broadened R(B)-curve and a lower value of Bc2 [206]. This effect has been
observed for instance in the hexagonal superconductor MgB2 by rotating B with respect
to I in the basal plane [208]. For a current density 30 A/cm2, the two-fold anisotropy
obtained just below Tc = 36 K is small, ∼ 8 % [208]. In our transport experiments
the current densities are ≤ 0.4 A/cm2 and we did not detect a significant effect on the
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Figure 7.3: Upper critical field of SrxBi2Se3. Panel (a) and (b): Resistance of SrxBi2Se3

as a function of B ‖ a, a∗ and c, for x = 0.10 and 0.15, respectively. The open symbols
indicate the midpoints of the transitions to the normal state. Panel (c) and (d): Bc2 obtained
for B ‖ a, a∗ and c, for x = 0.10 and 0.15, respectively. Solid symbols from midpoints
of R(T )-curves in fixed B. Open symbols from ρ(B) at fixed T . In the experiments for
x = 0.15 the crystal was not mounted on the rotator but oriented by eye, which adds some
inaccuracy as regards field alignment. The current direction was always along the a-axis,
with a precision of several degrees.
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Figure 7.4: Angular variation of Bc2 of SrxBi2Se3 in the basal plane. Panel (a) and (b):
Angular variation of Bc2 in the basal plane (aa∗-plane) for x = 0.10 and 0.15, respectively,
at temperatures as indicated. The data are obtained from R(B) measurements at fixed T .
The angle θ = 0◦ corresponds to B ‖ a∗ ⊥ I and θ = 90◦ to B ‖ a ‖ I . The solid black
line in panel (b) represents Bc2(θ) for an anisotropic effective mass model with two-fold
symmetry and γ = 3.2 (see text). The a and a∗ directions in the hexagonal basal plane are
defined as in the figure in the upper right corner of panel (b).

resistance when the current density was varied close to Tc (see Figure A.6 in Appendix
A). Also, when flux flow has a significant contribution, one expects the R(B)-curves for
B ⊥ I to be broader than the curves for B ‖ I . However, we observe the reverse (see
Figures 7.3(a),(b)). Moreover, the anisotropy is still present at T/Tc = 0.1 and is much
larger (of the order of 300 %, see Figure 7.4) than can be expected on the basis of flux
flow. In order to further rule out the influence of the current direction we have investigated
Bc2(θ) in the basal plane with the transport current perpendicular to the layers (I ‖ c)
and thus keeping B ⊥ I (see Figure. A.8 in Appendix A). The angular variation of the
resistance, measured in this geometry using a two-probe method, is similar to that reported
in Figure 7.1. Thus the two-fold anisotropy in Bc2 is also present for the B-field in the
aa∗-plane and the current along the c-axis.
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Next we address whether the variation of Bc2 in the basal plane can be attributed to
the anisotropy of the effective mass. Within the Ginzburg-Landau model [204, 209] the
anisotropy of Bc2 is attributed to the anisotropy of the SC coherence length, ξ, which
in turn relates to the anisotropy of the effective mass. For a layered superconductor the
anisotropy ratio γan = B

‖
c2/B

⊥
c2 =

√
M/m [205]. Here m and M are the effective masses

‖ and ⊥ to the layers. In the rhombohedral structure m = ma = ma∗ and M = mc,
where the subscripts a, a∗ and c refer to the effective masses for the energy dispersion
along the main orthogonal crystal axes (i.e. in the hexagonal unit cell). For a field
rotation in the aa∗-plane B‖c2 is in general isotropic, since ma ≈ ma∗(< mc). For a 3D
anisotropic superconductor the angular variation Bc2(θ) in a principal crystal plane can
be expressed as Bc2(θ) = Bc2(0◦)/(cos2 θ + γ−2 sin2 θ)1/2, where γ = Bc2(90◦)/Bc2(0◦).
To provide an estimate of γ for Sr0.15Bi2Se3, we compare in Figure 7.4(b) the measured
Bc2(θ) with the angular variation in the anisotropic effective mass model (solid line).
We obtain Bc2(0◦) = 2.3 T, Bc2(90◦) = 7.4 T and γ = 3.2. The effective mass ratio
ma∗/ma = γ2 [209] would then attain the large value of 10.2. As we show below, this is
not compatible with the experimental Fermi-surface determination.

The Fermi surface of n-doped Bi2Se3, with a typical carrier concentration n ∼ 2 ×
1019 cm−3 representative for the SC SrxBi2Se3 crystals [61, 201], has been investigated
by the Shubnikov - de Haas effect [61, 210, 211]. It can be approximated by an ellipsoid
of revolution with the longer axis along the kc-axis. A trigonal warping of the Fermi
surface due to the rhombohedral symmetry has been detected, but the effect is small: the
variation of the effective mass in the basal plane amounts to a few % only [210]. This also
explains why R(θ) in the normal state (Figure 7.1(a)), does not show a 2π/3 periodicity
superimposed on the two-fold symmetry induced by the current. Clearly, the two-fold
symmetry (Figure 7.4), while three fold is expected, and the calculated large ratio ma∗/ma

using the Ginzburg-Landau model are at variance with the experimental Fermi-surface
determination [210] and we discard this scenario.

We remark that the overall temperature variation Bc2(T ) reported in Figure 7.3(d) is
at variance with the standard BCS behaviour for a weak-coupling spin-singlet SC [181].
All the curves show an upward curvature below Tc, followed by a quasi-linear behaviour
down to the lowest temperatures. Furthermore, for B ‖ a, Bc2(T → 0) largely exceeds
the Pauli limit BP (T → 0) = 1.86 × Tc ≈ 5.6 T for a spin-singlet SC [212]. This
may point to an odd-parity component in the SC order parameter. Nagai (Ref. [207])
and Fu (Ref. [125]) recently proposed a model for odd parity polarized spin-triplet SC
developed in the context of CuxBi2Se3, and investigated the experimental consequences
of ∆4 pairing in the two-orbital model [197]. Here, SC is described by an odd-parity
two-dimensional representation, Eu, where the attractive potential pairs two electrons in
the unit cell to form a spin triplet, i.e. a linear combination of c1↑c2↑ and c1↓c2↓. The
indices 1,2 refer to the two orbitals and the arrows to the spin. The ∆4 state has zero-total
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spin along an in-plane direction n = (nx, ny) that is regarded as a nematic director and
breaks rotational symmetry. By taking into account the full crystalline anisotropy in the
Ginzburg-Landau model, it can be shown that n is pinned to a direction in the basal plane.
For n = x̂, point nodes in the SC gap are found along ŷ, whereas for n = ŷ two gap
minima occur at ±kF x̂ [125]. Our Bc2-data can be interpreted as reflecting a strongly
anisotropic SC gap function. The SC coherence length, ξ, along the main axes can be
evaluated from the Ginzburg-Landau relations Ba

c2 = Φ0/(2πξa∗ξc), Ba∗
c2 = Φ0/(2πξaξc)

and Bc
c2 = Φ0/(2πξaξa∗). Here Φ0 is the flux quantum. With the experimental Bc2-

values, taken at T/Tc = 0.1 in Figure 7.3(d) for x = 0.15, we calculate ξa = 19.6 nm,
ξa∗ = 7.6 nm and ξc = 5.4 nm. Interpreting ξ as the Cooper-pair size, this implies that the
pairing interaction is strongest along the a∗ and c-axis, and weakest along the a-axis. The
observation that ξa > ξa∗ ≈ ξc, is in agreement with a gap structure with n = ŷ. On the
other hand, in the ∆4 pairing model rotational symmetry breaking due to nematic order is
a property of the SC state, while Bc2 probes the transition to the normal state and therefore
should retain the hexagonal symmetry of the crystal lattice [213, 214]. This indicates a
more intricate scenario. We remark that rotational symmetry breaking in the spin system
has been observed by Nuclear Magnetic Resonance (NMR) in the related superconductor
CuxBi2Se3, which is considered to provide solid evidence for a spin-triplet state [126].

Yet another interesting possibility is a self-organized structural stripiness in the opti-
mum for superconductivity due to ordering of Sr atoms in the Van der Waals gaps. This
could naturally lead to an anisotropy of Bc2 when measured for a current in the basal
plane, because of an effective reduced dimensionality. The higher Bc2-values will then be
found for B ‖ I along the stripes. On the other hand, for I perpendicular to the layers the
basal-plane anisotropy of Bc2 is found as well (see Appendix A). This calls for a detailed
compositional and structural characterization of SrxBi2Se3 by techniques such as Electron
Probe Microprobe Analysis (EPMA) or Transmission Electron Microscopy (TEM). Notice
that in CuxBi2Se3 crystals EPMA has revealed that the Cu concentration shows variations
on the sub-mm scale, which gives rise to SC islands [215]. Moreover, a STM study reports
an oscillatory behaviour of the Cu pair distribution function due to screened Coulomb
repulsion of the intercalant atoms [216].

In conclusion, we have investigated the angular variation of the upper critical field
of superconducting crystals of SrxBi2Se3. The measurements reveal a striking two-fold
anisotropy of the basal-plane Bc2. The large anisotropy cannot be explained with the
anisotropic effective mass model or the variation of Bc2 caused by flux flow. We have
addressed two alternative explanations: (i) unconventional superconductivity, with an
odd-parity triplet Cooper-pair state (∆4 pairing), and (ii) self-organized striped supercon-
ductivity due to preferential ordering of Sr atoms. The present experiments and results
provide an important benchmark for further unravelling the superconducting properties of
the new candidate topological superconductor SrxBi2Se3.



Appendix A

Appendix: Rotational symmetry
breaking in SrxBi2Se3

A.1 Sample shape and demagnetization factor

The basal-plane transport experiments were performed on thin-bar shaped samples with the
current along the long axis. The dimensions of the Sr0.10Bi2Se3 crystal are 1.3×5.5×0.32

mm3 and of the Sr0.15Bi2Se3 crystal 1.3 × 2.3 × 0.35 mm3. We have estimated the
demagnetization factor N for the field along and perpendicular to the long axis (see
Ref. [217]). For Sr0.10Bi2Se3 we estimateN‖ = 0.05 andN⊥ = 0.213, and for Sr0.15Bi2Se3

N‖ = 0.12 and N⊥ = 0.20. For a Type II superconductor a demagnetization factor N 6= 0

gives rise to a correction of the internal field Hin = (Bapp/µ0)/(1 + χN). We conclude
these corrections are relatively small for our crystals and we neglect demagnetization
effects. Neglecting the effect of N does not have a significant effect on the derived values
of the large basal-plane anisotropy of the upper critical field Bc2.

A.2 Sample characterization: resistance and

ac-susceptibility

The temperature variation of the resistivity, ρ(T ), of several SrxBi2Se3 crystals has been
measured with a standard 4-probe low-frequency ac-technique in the PPMS. Typical
resistivity traces, taken in the temperature range 2-300 K, are shown in Figure A.1. The
resistance shows a metallic behavior. The ρ(T )-values at low temperature amount to
0.60 and 0.75 mΩcm for x = 0.10 and 0.15, respectively, and are in good agreement
with the values reported previously (See Refs. [61, 201]). The superconducting transition
temperatures as determined by the midpoints of the transitions are 2.84 K and 2.95 K for x
= 0.10 and 0.15, respectively. The ac-susceptibility,χAC , was measured in a driving field

91
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Figure A.1: Panel (a) and (b): Resistivity of SrxBi2Se3 single crystals with x = 0.15 and
0.10, respectively. Upper insets: zoom of the superconducting transition. Lower insets:
ac-susceptibility around the superconducting transition.

of 0.026 mT in the 3-Helium cryostat for several crystals with different sizes. The χAC
data yield superconducting volume fractions of 5-40 % for x = 0.10 and 80 % for 0.15,
respectively.

A.3 Superconducting transition of Sr0.10Bi2Se3 in

magnetic field

The suppression of the superconducting state by a magnetic field was measured by the resis-
tance as a function of temperature in fixed magnetic fields. The data for Sr0.10Bi2Se3 taken
in the PPMS down to a temperature of 2 K are shown in Figure A.2. The superconducting
transition temperatures are determined by the midpoints of the transitions.
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Figure A.2: Superconducting transition of Sr0.10Bi2Se3 measured in fixed magnetic fields
as indicated. In panel (a), (b) and (c) the B-field is applied along the a, a∗ and c-axis,
respectively.
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Figure A.3: Superconducting transition of Sr0.15Bi2Se3 measured in fixed magnetic fields
as indicated. In panel (a), (b) and (c) the B-field is applied along the a, a∗ and c-axis,
respectively.

A.4 Superconducting transition of Sr0.15Bi2Se3 in

magnetic field

The suppression of the superconducting state by a magnetic field was measured by the
resistance as a function of temperature in fixed magnetic fields. The data for Sr0.15Bi2Se3

taken in the 3-Helium cryostat down to 0.3 K are shown in Figure A.3. The supercon-
ducting transition temperatures are determined by the midpoints of the transitions. For
B‖a the resistance develops a small tail towards R = 0, which is attributed to a sample
inhomogeneity.
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Figure A.4: Panel (a) and (b): Angular variation of the magnetoresistance of Sr0.10Bi2Se3

at 2.0 K and of Sr0.15Bi2Se3 at 0.3 K, respectively. The angle θ = 0◦ corresponds to B⊥I .
The angle θ = 90◦ corresponds to B‖I , which is also close to B‖a.

A.5 Angular variation of the resistance as a

function of magnetic field

The angular variation of R(B) of the Sr0.10Bi2Se3 crystal was measured in the PPMS at
T = 2.0 K, whereas data for Sr0.15Bi2Se3 were taken at T = 2.0 K in the PPMS and at
T = 0.3 K in the 3-Helium cryostat. Selected R(B) curves are shown in Figure A.4. The
midpoints of the transitions to the normal state determine Tc(B) and have been used to
construct Figure 7.4 in Chapter 7.
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Figure A.5: Specific heat of Sr0.15Bi2Se3 as a function of temperature

A.6 Specific heat

The specific heat of a Sr0.15Bi2Se3 crystal with mass 7.6 mg was measured by the relaxation
method using the Heat Capacity Option in the PPMS in the temperature range 2-300 K.
In Figure A.5 the data from 2 to 200 K are shown. No sign of a structural transition is
found in this temperature range. The data between 200 and 300 K (not shown) show some
irregularities that can be attributed to the Apiezon N grease that was used to fix the sample
to the specific heat platform.

A.7 Current dependence of R(θ)

The angular variation R(θ) of the Sr0.10Bi2Se3 crystal was investigated for currents ranging
from 0.1 to 2 mA at T = 2 K and B = 1 T. No significant changes are observed for
currents I ≤ 1 mA as shown in Figure A.6. The small increase in resistance for the largest
current I = 2 mA is attributed to Joule heating.

A.8 Transport measurements with the current

along the c-axis

The angular variation R(θ) in the basal plane was measured with the current along the c-
axis for Sr0.15Bi2Se3. In this geometry the B-field is always perpendicular to the measuring
current. Two circular gold electrodes (diameter 60 µm) were evaporated exactly opposite
to each other on the basal-plane surfaces of a thin Sr0.15Bi2Se3 single crystal (label #2)
with dimensions 6 × 3 × 0.5 mm3. Four copper wires (25 µm) that served as current
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Figure A.6: Angular variation R(θ) of Sr0.10Bi2Se3 measured at T = 2 K and B = 1 T
for currents ranging from 0.1-2 mA as indicated.

and voltage leads were attached to the electrodes with silver paste, but effectively the
resistance was measured in a two-point configuration. Data were taken in the PPMS in the
temperature range 2-200 K with a current I = 1 mA, see Figure A.7. Superconductivity
results in a drop of 12% of the resistance. In this measurement configuration the transition
is relatively broad, The onset temperature for superconductivity for this crystal is 2.75 K.
The angular variation for B = 0.5 T in the basal plane is shown in Figure A.8 in the
T -range 2.0-3.5 K. The two-fold anisotropy is the same as in the measurements with the
current in the basal plane for x = 0.10 (Figure 7.1 in the Chapter 7). For B⊥I‖c the
lowest resistance values and the largest values for Bc2 are found for the B-field along the
long direction of the sample. After the measurements gold electrodes were evaporated at a
different place opposite to each other on the basal plane surfaces and the experiment was
repeated with essentially the same results and conclusions.



98 Appendix A. Rotational symmetry breaking in SrxBi2Se3

Figure A.7: Resistance of Sr0.15Bi2Se3 for I‖c-axis, measured in a two-point configuration.
Superconductivity results in a drop of 12% of the resistance. The residual resistance of
0.112 mΩ at 2.0 K is due to the silver paste and the copper wires.

Figure A.8: Angular variation R(θ) in the basal plane for I‖c-axis for B = 0.5 T at
temperatures as indicated. The lowest curve (black symbols) is at 2.0 K. The anisotropy is
two-fold. The lowest resistance values and thus the largest values for Bc2 are found for the
B-field along the long direction of the sample.



Summary

Topological insulators have sparked ample interest in the condensed matter physics research
community in recent years due to their theoretical research value for novel quantum
phenomena and potential practical applications, like in spintronics. However, a long-
standing problem in the branch of the transport research field is that the bulk conductivity
overwhelms the charge transport and therefore hinders the access to the topological surface
states in most current topological insulator materials. The first main topic of this thesis is
therefore to reduce the contribution of the bulk conductivity in the prototypical topological
insulator material Bi2−xSbxTe3−ySey (BSTS), then detect the topological surface states
and investigate their transport properties. As the notion of topological insulators extends
to topological superconductors, topological superconductors have become a hot topic as
well, notably because they could harbor Majorana zero modes at the surface. Majorana
zero modes are predicted to provide a new route to fault tolerant quantum computation.
Therefore, the search for topological superconductors and the determination of their
intrinsic properties is an important research topic. The second main topic of this thesis is
to study two candidate topological superconductors ErPdBi and SrxBi2Se3.

In Chapter 2, we present the preparation and characterization of the crystals studied
in this thesis, i.e. BSTS (Chapter 4, 5), ErPdBi (Chapter 6) and SrxBi2Se3 (Chapter 7).
The BSTS and SrxBi2Se3 crystals were grown by the Bridgman technique, while ErPdBi
was prepared by the flux method. The phase homogeneity was investigated by X-ray
diffraction and Electron Probe Micro Analysis. The single crystallinity was verified by
back-scattering Laue diffraction. Besides we describe the experimental facilities used for
investigation of the transport and magnetic properties of these crystals, especially, the
Physical Property Measurement System (PPMS) Dynacool. Special attention is given to
the Resistivity option, Horizontal Rotator option, VSM option and ACMS II option.

In Chapter 3, we present the general theoretical background relevant to the thesis re-
search. Topological insulators are distinguished by their Z2 topological invariant, which in
centrosymmetric materials can be calculated from the parity of the occupied valence bands
at the time-reversal invariant points in k space. Band inversion originating from strong
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spin-orbit coupling is the root-cause in topological insulators and gives rise to topological
edge or surface states with unique properties such as spin-momentum locking and a π
Berry phase. To examine their intrinsic insulating behavior in terms of electrical transport,
simple criteria given by Mott and Ioffe-Regel with a critical value of the carrier density
NBD = 3 × 1014 cm−3 and kF ` ∼ 1, respectively, are introduced. Also, band bending
effects which affect the transport properties are briefly discussed. Next the theoretical
background of the weak anti-localization effect (WAL) and the Shubnikov de Haas effect
(SdH) are presented. WAL and SdH are used to characterize the topological surface states
in BSTS. Finally, the criterion for identification of time-reversal invariant topological
superconductors with inversion symmetry is presented, that is, (i) the superconducting pair
wave function has odd-parity symmetry and the superconducting gap is fully gapped; (ii)
the Fermi surface encloses an odd number of time reversal invariant momenta.

In Chapter 4, an extensive investigation of the bulk-insulating properties of BSTS
single crystals is presented. In order to obtain intrinsic bulk-insulating transport behavior,
numerous Bi2−xSbxTe3−ySey single crystals have been grown around x = 0.5 and y = 1.3

with composition steps in x of 0.02 and in y of 0.1. Through measurements of resistance
and Hall effect, we show that the composition Bi1.46Sb0.54Te1.7Se1.3 has a record-high
resistivity and a low carrier density. Since the bulk and surface channels connect in parallel,
the surface transport can be enhanced by reducing the sample thickness. We performed
resistivity measurements for crystals with different thicknesses and analyzed the measured
resistivity at low temperature using a parallel resistor model. The analysis shows that
when the sample thickness is reduced to 1 µm the surface contribution to the electrical
transport amounts to 97 %. Therefore, devices fabricated with submicrometer thickness
are sufficiently bulk insulating to exploit the topological surface states by transport tech-
niques. This is further examined by magnetoresistance measurements on an exfoliated
BSTS nanoflake that show the weak antilocalization effect. The 2D nature of the weak
antilocalization is confirmed by the collapse of the magnetoconductance data as a function
of the perpendicular magnetic field component. The 2D weak antilocalization is analyzed
within the Hikami-Larkin-Nagaoka model that gives the fit parameter α ' −1 as expected
for conduction via a pair of topological surface states. No Rashba-split non-topological
surface states appear in our Bi1.46Sb0.54Te1.7Se1.3 crystals, which is in agreement with
ARPES data recorded under band-bent conditions.

In Chapter 5, we present a magnetotransport study on low-carrier concentration crystals
of the topological insulator Bi2−xSbxTe3−ySey with (x, y) = (0.50, 1.3) and (x, y) =

(0.54, 1.3). Shubnikov - de Haas oscillations with a frequency of 63 T and 33 T for
(x, y) = (0.50, 1.3) and (x, y) = (0.54, 1.3) respectively are observed in high magnetic
fields. When tilting the sample with respect to the field, the oscillations collapse as a
function of the perpendicular magnetic field component, which confirms their 2D origin.
The oscillations are analyzed within the framework of the Lifshitz-Kosevich theory and
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important transport parameters, such as the cyclotron mass, the mean free path and the
mobility are deduced. The Landau level plots are obtained and the resulting phase factors
are extracted from the extrapolated x-axis crossing of the linear Landau level plot. The
resulting phase factors deviate from the ideal value 0.5 as expected for topological surface
states. The deviation is analyzed with a model incorporating a non-ideal Dirac dispersion,
that was measured directly using ARPES, and a Zeeman coupling-term with large gs-
factor for (x, y) = (0.50, 1.3). Based on the band parameters deduced from ARPES
measurements carried out on a sample prepared from the same single-crystalline batch,
the SdH oscillations can be attributed to topological surface states with an electron spin
g-factor gs = 70 or −54 as fitting parameter in the LL plot model. To estimate the surface
contribution, the Hall resistivity for (x, y) = (0.50, 1.3) is fitted within a two-band (bulk +
surface) model by combining the carrier density and mobility for the topological surface
states from the SdH data. It shows that the surface contribution to the total electrical
transport amounts to around 32 % in our Bi1.5Sb0.5Te1.7Se1.3 crystal with a thickness of
40 µm.

In Chapter 6, we present the discovery of superconductivity at Tc = 1.22 K and
antiferromagnetic order at TN = 1.06 K in the non-centrosymmetric half Heusler compound
ErPdBi, based on electrical transport, ac-susceptibility and dc-magnetization measurements.
Bulk superconductivity is inferred from a diamagnetic screening volume fraction of around
90%. The upper critical field, Bc2, has an unusual quasi-linear temperature variation
which reaches a value of 1.6 T for T → 0. Antiferromagnetic order sets in below Tc

and is suppressed by a magnetic field at BM ∼ 2.5 T for T → 0. The combination of
superconductivity and AFM order is unusual. Possibly, the ordering phenomena occur in
different electron subsystems: superconductivity in the low-carrier hole band and local
moment magnetism due to Er 4f -moments. However, since TN ' Tc, and ErPdBi lacks
inversion symmetry, the interplay of superconductivity and magnetism might give rise
to a complex ground state. Moreover, ErPdBi has an inverted band order indicating its
non-trivial topological nature according to electronic structure calculations. Together
with the possibility of even and odd parity mixed superconducting states it is a promising
candidate for topological superconductivity.

In Chapter 7, we present the discovery of nematic superconductivity in SrxBi2Se3 crys-
tals. We present the investigation of the upper critical field of superconducting SrxBi2Se3

crystals with Tc = 3 K. When the magnet field is rotated in the basal plane, the angular
dependent magnetoresistance curves and the upper critical field Bc2 both reveal a striking
two-fold anisotropy. For Sr0.15Bi2Se3, the upper critical fieldsBc2 along the two orthogonal
directions in the basal plane (a and a∗) are 7.4 T and 2.3 T, respectively, at T = 0.25 K.
The effect of flux flow caused by the Lorentz force and the anisotropic effective mass
Ginzburg-Landau model both fail to explain the large anisotropy. However, the two-fold
anisotropy is in agreement with a recently published theoretical model for nematic super-
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conductivity, i.e. unconventional superconductivity with an odd-parity triplet Cooper-pair
state (∆4 pairing). However, a structural origin such as a self-organized striped supercon-
ductivity due to preferential ordering of Sr atoms cannot be excluded at the moment. The
present experiments and results provide an important benchmark for further unraveling the
superconducting properties of the new topological superconductor SrxBi2Se3.



Samenvatting

Sinds een aantal jaren vormen topologische isolatoren een belangrijk onderzoeksthema
in het gebied van de natuurkunde van de gecondenseerde materie, enerzijds vanwege
hun waarde voor het theoretisch onderzoek aan nieuwe vormen van quantum materie en
anderzijds door toekomstige toepassingen in bijvoorbeeld spintronica. Een zeer actueel
probleem in het transportonderzoek aan de huidige topologische materialen is echter dat de
geleiding van de bulk overheerst, wat het onderzoek naar transport van lading en spin in de
topologische toestanden aan het oppervlak belemmert. Een eerste hoofdonderwerp in dit
proefschrift is daarom het verminderen van de bulkgeleiding in de archetypische topologis-
che isolator Bi2−xSbxTe3−ySey (BSTS), het detecteren van de oppervlakte toestanden en
het meten van hun transporteigenschappen. Aangezien het concept topologische isolator
uitgebreid kan worden naar supergeleiding, staan ook topologische supergeleiders sterk in
de belangstelling, in het bijzonder omdat de supergeleidende toestand aan het oppervlak
Majorano zero-modes kan herbergen. Van Majorano zero-modes is voorspeld dat het
gebruik er van als quantum bit een belangrijke nieuwe route oplevert voor berekeningen in
quantum computers. Het zoeken naar nieuwe topologische supergeleiders en het meten van
hun eigenschappen is een prominent onderzoeksonderwerp. Het tweede hoofdonderwerp
van dit proefschrif is derhalve het onderzoek naar de kandidaat topologische supergeleiders
ErPdBi en SrxBi2Se3.

In hoofdstuk 2 presenteren we de bereidingswijze en karakterisatie van de éénkristallen
bestudeerd in dit proefschrift: BSTS (Hoofdstuk 4 en 5), ErPdBi (Hoofdstuk 6) en
SrxBi2Se3 (Hoofdstuk 7). De BSTS en SrxBi2Se3 kristallen zijn gegroeid met de Bridgman
methode, terwijl ErPdBi is bereid met de flux methode. De fasehomogeniteit is onderzocht
door middel van Röntgendiffractie en Electron Probe Micro Analysis. Laue diffractie
is gebruikt om de éénkristallijne kwaliteit te controleren. Daarnaast beschrijven we de
experimentele opstellingen gebruikt om de transport en magnetische eigenschappen van
de kristallen te meten, met name de Physical Property Measurement System (PPMS)
Dynacool. Speciale aandacht gaat uit naar de Weerstand optie, de Horizontale Rotator
optie, de VSM optie en de ACMS II optie.
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In Hoofdstuk 3 presenteren we de algemene theoretische achtergrond die relevant
is voor het onderzoek beschreven in dit proefschrift. Topologische isolatoren worden
gekenmerkt door hun Z2 topologische invariant, die in centrosymmetrische materialen
berekend kan worden uit de pariteit van de bezette valentiebanden bij de tijdomkeerinvari-
ante punten in de k-ruimte. Bandinversie veroorzaakt door sterke spin-baan koppeling
ligt ten grondslag aan topologische isolatoren en de topologische rand of oppervlakte
toestanden met unieke eigenschappen, zoals spin-momentum koppeling en de π Berry
fase. Om de intrinsieke isolator eigenschappen in transport termen te bepalen, worden
de criteria van Mott en Ioffe-Regel met een kritieke waarde voor de dichtheid van de
ladingdragers NBD = 3 × 1014 cm−3 en kF ` ∼ 1, respectievelijk, geintroduceerd. Ook
band-buigingseffecten die van invloed zijn op de transporteigenschappen worden kort be-
discussieerd. Vervolgens wordt de theoretische achtergrond van het zwakke anti-localisatie
effect (WAL) en het Shubnikov - de Haas effect (SdH) besproken. WAL en SdH worden
gebruikt om de topologische oppervlakte toestanden van BSTS te karakteriseren. Als
laatste wordt het identificatie criterium voor tijdomkeerinvariante topologische supergelei-
ders met inversie symmetrie gepresenteerd: (i) de supergeleidende paargolffunctie heeft
een oneven pariteit en de supergeleidende energiekloof is overal open, en (ii) het Fermi
oppervlak omsluit een oneven aantal tijdomkeerinvariante punten in de k-ruimte.

In Hoofdstuk 4 wordt een omvangrijke studie van de bulk-isolerende eigenschappen
van BSTS éénkristallen gepresenteerd. Om intrinsiek bulk-isolerend transport te bereiken
zijn een groot aantal Bi2−xSbxTe3−ySey éénkristallen gegroeid, met samenstelling rond
x = 0.5 en y = 1.3 met stappen in x van 0.02 en in y van 0.1. Uit weerstand- en Hallef-
fectmetingen volgt dat de compositie Bi1.46Sb0.54Te1.7Se1.3 een record-hoge soortelijke
weerstand heeft en tegelijkertijd een lage ladingdragersdichtheid. Aangezien het inwendi-
ge van het kristal (de bulk) en het oppervlak twee parallelle weerstandskanalen vormen,
kan de transportcomponent van het oppervlak relatief versterkt worden door de dikte
van het kristal te verminderen. Om dit te onderzoeken hebben we weerstandsmetingen
uitgevoerd aan kristallen met verschillende diktes en de gemeten weerstand ganalyseerd
met het parallelle-weerstanden model. De analyse laat zien dat als de dikte van het kristal
gereduceerd is tot 1 µm, de bijdrage van het oppervlak aan de totale electrische geleiding
97 % bedraagt. Dus devices gefabriceerd met een submicrometer dikte zijn voldoende bulk
isolerend om de topologische oppervlakte toestanden te benutten met gebruik van transport
technieken. Dit is verder bestudeerd aan de hand van magnetoweerstandsexperimenten aan
een geëxfolieerde BSTS nanoflake, waarin zwakke localisatie wordt waargenomen. Het
2D karakter van de zwakke loklaisatie wordt bevestigd door de universele magnetogeleid-
ingscurves als functie van de loodrechte component van het mageteetveld. De 2D zwakke
localisatie is geanalyseerd met het Hikami-Larkin-Nagaoka model dat een fit parameter
α ' −1 geeft, zoals verwacht voor geleiding ten gevolge van één paar topologische
oppervlakte toestanden. Triviale Rashba-split oppervlakte toestanden zijn afwezig in onze
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Bi1.46Sb0.54Te1.7Se1.3 kristallen, hetgeen in overeenstemming is met ARPES metingen
onder band-buigingscondities.

In Hoofdstuk 5 presenteren we een hoog-veld magnetotransport studie van kristallen
van de topologische isolator Bi2−xSbxTe3−ySey met (x, y) = (0.50, 1.3) en (x, y) =

(0.54, 1.3), met een lage ladingdragersconcentratie. Shubnikov - de Haas oscillaties
zijn waargenomen in hoge magneetvelden met een frequentie van 63 T en 33 T voor
(x, y) = (0.50, 1.3) en (x, y) = (0.54, 1.3), respectievelijk. Hoekafhankelijke metingen
laten zien dat de oscillaties samenvallen als functie van de loodrechte component van
het magneetveld. Dit bevestigt de 2D oorsprong van de oscillaties. De SdH oscillaties
zijn geanalyseerd met de Lifshitz-Kosevich theorie en belangrijke transportparameters,
zoals de cyclotron massa, de gemiddelde vrije weglengte en de mobiliteit zijn bepaald.
Landau-niveau grafieken zijn verkregen en de fasefactoren zijn bepaald uit de lineaire
extrapolatie naar de afsnijde met de x-as. De aldus verkregen fasefactoren wijken af van
de waarde van 0.5 voorspeld voor een topologische oppervlakte toestand. De afwijking
is voor (x, y) = (0.50, 1.3) geanalyseerd met een Landau-niveau model met een niet
ideale Dirac dispersie en een Zeeman term met een aanzienlijke electron-spin g-factor, gs.
Gebruikmakend van de electronband parameters verkregen uit ARPES metingen aan een
deel van hetzelfde (x, y) = (0.50, 1.3) kristal kunnen de SdH oscillaties toegeschreven
worden aan topologische oppervlakte toestanden met gs = 70 of -54 als fitparameter in
het Landau-niveau model. Om de transportcomponent van de oppervlakte toestanden af
te schatten, is de Hall weerstand voor (x, y) = (0.50, 1, 3) geanalyseerd met een twee-
banden (bulk + oppervlak) model door het combineren van de ladingdragersdichtheid en
mobiliteit van de topologische oppervlakte toestanden uit de SdH data. De berekening
geeft een bijdrage van het oppervlak aan de totale electrische geleiding van 32 % in het
Bi1.5Sb0.5Te1.7Se1.3 kristal met een dikte van 40 µm.

In Hoofdstuk 6 presenteren we ontdekking van supergeleiding bij Tc = 1.22 K en anti-
ferromagnetische ordening bij TN = 1.06 K in de noncentrosymmetrische halve-Heusler
verbinding ErPdBi, gebaseerd op metingen van de electrische weerstand, ac-susceptibiliteit
en dc-magnetizatie. Uit het diamagnetische signaal kan geconcludeerd worden dat een
volume fractie van 90 % van het kristal supergeleidend is. Het bovenste kritische veld, Bc2,
heeft een ongebruikelijke quasi-lineaire temperatuurafhankelijkheid en bereikt een waarde
van 1.6 T voor T → 0. Antiferromagnetische ordening treedt in net beneden Tc en wordt
onderdrukt met een magneetveld van BM ∼ 2.5 T voor T → 0. Dat supergeleiding èn
antiferromagnetisme tegelijkertijd bestaan is ongebruikelijk. Mogelijkerwijs worden beide
ordeningsverschijnselen verorzaakt door verschillende electronsubsystemen: supergeleid-
ing in de gaten geleidingsband met een lage ladingdragersconcentratie en lokaal-moment
magnetisme door de magnetische 4f momenten van de Er atomen. Aangezien TN ' Tc

en ErPdBi geen inversiesymmetrie heeft zou de wisselwerking tussen supergeleiding en
magnetisme aanleiding kunnen geven tot een complexe grondtoestand. Daarnaast laten
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berekeningen van de electronenstructuur zien dat ErPdBi een band-inversie heeft en dus
een topologisch karakter. Dit, in combinatie met de mogelijkheid voor een even/oneven
gemengde supergeleidende toestand, maakt ErPdBi tot een veelbelovende kandidaat voor
topologische supergeleiding.

In Hoofdstuk 7 presenteren we de ontdekking van nematische supergeleiding in
SrxBi2Se3. We beschrijven een experimentele studie van het bovenste kritische veld,
Bc2, van supergeleidende SrxBi2Se3 kristallen met Tc = 3 K. Wanneer het magneetveld
gedraaid wordt in het basisvlak blijken de hoekafhankelijke magnetoweerstandscurves
en Bc2 beide een opvallende tweevoudige anisotropie te vertonen. Voor een kristal met
samenstelling Sr0.15Bi2Se3 bereikt Bc2 voor een magneetveld langs de twee orthogonale
hoofdrichtingen in het basisvlak (a and a∗) een waarde van 7.4 T en 2.3 T, respectievelijk,
bij T = 0.25 K. De effecten van flux flow op Bc2 veroorzaakt door de Lorentzkracht en
het Ginzburg-Landau model voor een anisotrope effectieve massa kunnen de gemeten
anisotropie niet verklaren. Echter, een recent gepubliceerd model voor nematische su-
pergeleiding, opgesteld voor de topologische supergeleider CuxBi2Se3, kan de metingen
wel verklaren. Dit model betreft onconventionale supergeleiding met exotische triplet
Cooper-paar toestanden (∆4 paring). Een structurele oorsprong van de tweevoudige
anisotropie in Bc2, nl. een zelf-georganiseerde striped supergeleiding door een voorkeur-
sordening van Sr atomen, kan echter niet uitgesloten worden. De huidige experimentele
resultaten bieden een belangrijk referentiekader om de supergeleidende eigenschappen van
deze nieuwe topologische supergeleider verder te ontrafelen.
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