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Latin symbols
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EF Fermi energy
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TC Curie temperature
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kB Boltzmann constant
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Greek symbols

α coefficient of linear thermal expansion
β coefficient of volume thermal expansion
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∆ energy gap
ε dielectric constant
ΘD Debye temperature
κ compressibility
λ magnetostriction coefficient
ν critical exponent
ξ correlation length
ρ resistivity
τ correlation time
ψ wave function
χ susceptibility
ω frequency
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QCP quantum critical point
QPT quantum phase transition
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1 Introduction

In correlated metals the electron-electron interactions are not negligible, as
it is instead assumed in the Fermi gas model used to describe the (nearly) free
electrons in metals. Electrons in correlated metals are successfully described
by the Fermi liquid (FL) theory, based on the concept of quasi-particles [1, 2, 3,
4]. Nevertheless at a quantum critical point (QCP) the FL description breaks
down and the system shows a so-called non-Fermi liquid (nFL) behaviour.
QCPs, which form an intriguing novel topic in the field of correlated metals,
are phase transitions that take place at T = 0. These are driven by quantum
fluctuations rather than by thermal fluctuations, as in the case of a classical
phase transition. A system can be driven to a QCP by tuning a non-thermal
control parameter such as pressure, magnetic field or doping. Theoretical
models of QCPs are based on the idea that static and dynamic of the order
parameter couple at the QCP [5, 6, 7]. The classical description of a phase
transition in terms of critical fluctuations is still valid for the quantum case
if d + z dimensions are considered, where d is the physical dimension of the
system while z, the dynamical critical exponent, accounts for the dynamics
(Hertz-Millis model).

The most studied quantum phase transitions (QPTs) in correlated met-
als involve magnetism. Most of these metals are Ce, Yb or U based systems
(mainly heavy fermions (HFs)) [8] where the itinerant magnetism is due to the
f -electrons and the QCP is caused by a competition between Kondo screen-
ing and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [9]. In this
simple picture, the magnetic order is suppressed when the local f -moments
Kondo screening by the conduction electrons becomes dominant compared
to the RKKY f -moments long-range interaction; which is mediated by the
conduction electrons as well. The suppression of the magnetic order leads to
the observation of nFL behaviour in transport and thermal properties. Ex-
perimental proof of the Hertz-Millis type of QCP has been reported in the
literature for correlated metals [4, 10, 11]. For instance, CeNi2Ge2 is a nFL
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compound where the resistivity data indicate the system is in the close vicinity
of a QCP [12]. The specific heat divided by the temperature presents a strong
increase below 6 K and nFL behaviour over one decade in temperature [13],
consistent with the Hertz-Millis predictions for itinerant 3D spin density wave
(SDW) fluctuations at a zero-field antiferromagnetic (AFM) QCP.

Although the Hertz-Millis theoretical model is well established as a good
description of quantum criticality, some compounds have shown deviations
from the model. The most interesting ones reported [14] are YbRh2Si2, in
field [15, 16] and with Ge-doping [17, 18], and CeCu6 doped with Au [4]. In
YbRh2Si2 the (already low) AFM transition temperature is suppressed to zero
by applying a small external magnetic field [16]. In parallel, by replacing Si
with Ge, an AFM QCP is reached with much smaller magnetic field [17]. The
comparison of the two QCPs allowed to exclude the critical behaviour is an
artefact due to the external magnetic field. The resistivity at the doping driven
QCP is linear in temperature up to 8 K [17], demonstrating the robustness of
the non-Fermi liquid behaviour up to two decades in temperature. Although
the specific heat presents evidence of a bulk ‘itinerant’ QPT [19], the tempera-
ture dependence of the bulk susceptibility and the nuclear magnetic resonance
(NMR) spin-lattice relaxation rate cannot be explained with this model [20].
The case of CeCu6-xAux attracted much attention as well because of the un-
expected results. While CeCu6-xAux exhibits 3D AFM ordering, specific heat
and resistivity data are not consistent with such a scenario [4]. Moreover
inelastic neutron scattering indicates quasi-2D critical fluctuations [21], but
the fractional exponent in the neutron E/T scaling cannot be explain with
a 2D SDW picture [22]. These examples highlight the need of a new frame-
work when the Hertz-Millis model of quantum criticality (so-called ‘itinerant’
quantum criticality) breaks down. A new model, so called ‘local’ quantum
criticality, is proposed [22]. To compare it with the classical criticality and the
Hertz-Millis quantum criticality models, where the critical fluctuations extend
in space for the former and in space and time for the latter, the local quantum
criticality model considers critical fluctuations of the order parameter in time
but not in space.

A powerful detection tool for quantum criticality is the Grüneisen ratio,
which is proportional to the ratio of the thermal expansion over the specific
heat, Γ ∝ β/c. It has been shown that the Grüneisen ratio diverges at any
QCP, regardless of the type of quantum criticality [23]. When the control
parameter is fixed and the temperature is changed, the temperature exponent
of Γ ∝ T−νz provides important information regarding critical exponents of the
system, such as the correlation length critical exponent ν and the dynamical
critical exponent z. These exponents characterize the QCP: while ν provides
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the spatial degree of correlation, z gives the temporal one. The divergence of
the Grüneisen ratio has been experimentally proved for several compounds.
For instance, it has been shown that the Grüneisen ratio diverges for both
CeNi2Ge2 and YbRh2Si2 [13]. While the divergence of the former compound
shows νz = 1, as predicted for a Hertz-Millis type of QCP, the latter presents
νz < 1, consistent with a scenario where local critical excitations coexist with
critical spin fluctuations [20].

Even more intriguing is the observation that the zero temperature instabil-
ities influence the electronic properties of non-zero temperature phases, as ob-
served in the case of unconventional superconductivity (SC). According to the
standard model of superconductivity (Bardeen, Cooper and Schrieffer, BCS),
superconductivity is due to conduction electrons that form a two electron sys-
tem (quasi-particle) called Cooper pair, due to an attractive interaction medi-
ated by the lattice. The two electrons forming a Cooper pair have anti-parallel
spin and zero angular momentum (spin-singlet state). An unconventional (or
non s-wave) superconductor is a system that cannot be described by the stan-
dard BCS model. An intriguing example of unconventional superconductivity
is the triplet superconductivity, as discovered in UGe2 in 2000 [24, 25]. In the
past decade three similar systems have been discovered: URhGe [26, 27], UIr
[28] and UCoGe [29]. In these systems the superconducting phase is formed
in the presence of ferromagnetic (FM) order, hence the name superconduct-
ing ferromagnets (SCFMs). Since the presence of an internal magnetic field
obstruct the formation of anti-parallel spins of the Cooper pair, SCFMs are
described in terms of electron pairs with parallel spin (spin-triplet state) [30].
Moreover, the electron pairing is believed to be mediated by the exchange of
longitudinal ferromagnetic spin fluctuations, which are enhanced in the vicin-
ity of a QCP. Other examples of unconventional superconductivity are found
amongst the HF systems. Superconductivity with a non-phononic pairing
mechanism is observed in materials like CeCu2Si2 [31] and CeCu2Ge2 [32].
The discovered of SC in CeCu2Si2 at ambient pressure was recently linked to
the presence of a 3D SDW AFM QCP at very low pressure for the Ge-doped
system [33]. The proposed superconducting glue in this case are the quantum
critical spin density wave fluctuations [14]. A last example of unconventional
SC, more related to technological applications of superconductivity, are the
high temperature superconductors (HTSCs), such as the cuprates [34] or the
iron pnictides [35, 36]. For both cuprates and pnictides, the study of pressure
and doping phase diagrams uncovered the presence of QCPs in close relation
to the high temperature SC phases. Experiments provided evidence of uncon-
ventional d-wave superconductivity, as for instance showed by the symmetry
of the superconducting gap function. Although great effort is devoted to the
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study of these systems, the pairing mechanism in the HTSCs is still an open
issue, where the most likely scenario is a spin density wave pairing mediation.

In this thesis the thermal properties of specific systems, such as correlated
metals presenting AFM or FM quantum critical points, are studied. The
Grüneisen ratio is used to characterize these systems. The thermal properties
of an unconventional superconductor, close to a FM QCP, are also reported.

In chapter 2 a brief overview of the current literature regarding QCPs and
unconventional superconductivity is described. The classical vs. quantum
phase transition case is discussed, together with the relevant aspect of models
for superconducting ferromagnetic systems.

In chapter 3 the experimental techniques used during this thesis work are re-
viewed and their implementation is presented. Cryogenics techniques down to
30 mK are combined with resistivity, ac-susceptibility, specific heat and ther-
mal expansion measurements methods. In particular, the parallel-plate capac-
itor dilatometry technique is discussed and the calibration of the dilatometer
is presented down to low temperatures (∼ 30 mK).

In chapter 4 the case of an AFM QCP is considered. In the heavy fermion
system CeRu2Ge2 AFM is suppressed when Ru is replaced by 76 at.% Fe
[37]. Inelastic neutron scattering experiments revealed that the Ce moments,
responsible for the AFM, become increasingly shielded by the conduction elec-
trons when lowering the temperature. This results in a long-range incommen-
surate magnetic order at low temperatures [37]. Nevertheless it was proved
that the random fluctuations change the overlap between conduction electrons
and local moments and this causes part of the moments to survive down to
the lowest temperature and others to be fully shielded. Such a behaviour dif-
fers from the Hertz-Millis type [6] and from the local moment model [22] and
a new scenario is proposed in ref. [37]. It is therefore extremely interesting
to use the Grüneisen ratio in order to study the critical exponents, ν and z,
of the Ce(Ru0.24Fe0.76)2Ge2 system. As AFM order was still present in the
sample, a magnetic field is applied along the easy axis to suppress AFM and
the thermal properties in field are studied, in a similar way as was previously
done for YbRh2(Si,Ge)2 [17].

In chapter 5 an itinerant FM QCP is studied using the Grüneisen parame-
ter. The unconventional superconductor URhGe [26] presents a 3D FM SDW
QCP when doped with 38 at.% of Ru (critical concentration) [38]. This offers
the opportunity of studying one of the few ferromagnetic systems with evi-
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dence of a Hertz-Millis type of quantum criticality. The thermal properties of
several polycrystalline samples of the U(Rh,Ru)Ge series are reported in or-
der to study the evolution of the Grüneisen ratio towards quantum criticality.
Particular attention is given to a single crystalline sample URh0.62Ru0.38Ge
prepared at the critical concentration for suppression of FM order. The ther-
mal properties and the Grüneisen ratio of the single crystal at the critical
concentration are studied in order to characterize the nature of the quantum
criticality.

Chapter 6 focuses on the recently discovered superconducting ferromagnet
UCoGe [29]. Experimental evidence allowed to conclude that this system
presents unconventional triplet SC [29, 39]. Experiments on Si-doped samples
[40] and under hydrostatic pressure [41, 42] revealed the presence of FM and SC
QCPs, supporting the hypothesis that SC is mediated by FM spin fluctuations,
enhanced in the vicinity of the QCP. The thermal expansion measurements
reported in this chapter are the first to prove bulk SC in polycrystalline as well
as in single crystalline samples. Moreover, thermal expansion measurements
of single crystalline samples of UCoGe in applied magnetic field are carried
out in order to study the bulk response to field of FM and SC along the
crystallographic axes.
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2 Theoretical aspects

Nossignori. Per me, io sono
colei che mi si crede!

L. Pirandello

In this chapter a brief review of the present literature describing quantum
phase transitions (QPT) and their associated quantum critical points (QCPs)
[4, 14, 43, 44, 45] is presented, together with the theory proposed by Zhu et al
[23] on the divergence of the Grüneisen ratio at the QCP. Since spin fluctua-
tions, enhanced at the QCP, are considered to be the glue for unconventional
superconductivity, the state of the art of these scenario’s are reviewed as well.

2.1 Introduction

Several thermodynamic quantities are presented in the succeeding chapters.
In the following section we shall concentrate on several different contribu-
tions present in the specific heat and in the thermal expansion, since these
will be used to discern the non-critical contributions in the quantum critical
regime. The Landau theory for classical phase transitions and an overview of
the Ehrenfest relation are presented as well.

2.1.1 Specific heat

The thermal contribution of a crystal lattice is well described by the De-
bye model [46]. The model considers the collective vibrations of the lattice
(phonons) up to a cut-off frequency ωD. ωD is defined as the frequency at
which the total number of states, with density Z(ω), is equal to 3sN with N
the Avogadro’s number and s the number of atoms per formula unit. The De-
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bye temperature is then defined as ΘD = ~ωD/k, where kB is the Boltzmann
constant. In solids ΘD is typically of the order of 200-400 K.

For an isotropic material the internal energy in the Debye model takes the
following form:

E(T ) = E0 + 9NskBT

(
T

ΘD

)3 ∫ ΘD/T

0

x3dx

ex − 1
. (2.1)

where E0 is the zero point contribution to the internal energy. The Debye
temperature ΘD is:

ΘD =
~c
kB

(
6π2Ns

V

)1/3

(2.2)

where V is the molar volume and c= ω/k is the propagation speed in the
medium of the phonons with wave vector k and frequency ω. The specific
heat per molar volume clat is then derived by taking the derivative of E with
respect to the temperature:

clat(T ) = 9NkBs

(
T

ΘD

)3 ∫ ΘD/T

0

x4exdx

(ex − 1)2
(2.3)

At low temperatures, when T � ΘD, the integral can be solved expanding
its upper limit to infinity, providing an expression for the lattice contribution
to the specific heat:

clat(T ) =
12π4

5
NkBs

(
T

ΘD

)3

(2.4)

This is in good agreement with experimental data [47, 48]. Such a de-
scription alone fails at very low temperatures, where the contribution of the
conduction electrons becomes important. At very low temperatures the Fermi
distribution around the Fermi energy EF drops more rapidly to zero and the
electrons need less energy to hop to an unoccupied state. A bigger number
of electrons can therefore absorb thermal energy. The contribution of the
electrons to the specific heat is linear in temperature:

cel(T ) =
π2

2
NskB

T

TF
(2.5)

where TF = EF/k is the Fermi temperature. The specific heat of solids at low
temperatures presents therefore a T 3-term due to the lattice contribution and
a T -term due to the electronic contribution:

c(T ) = γT + βT 3 (2.6)



8 2. Theoretical aspects

where γ = π2NskB/2TF and β = 12π4NkBs/5Θ3
D. Deviations from this be-

haviour are observed for metals which are not well described by the free elec-
tron model, such as magnetic metals [46].

The behaviour of a metal in a magnetically ordered state can be described
by magnons. Similarly to the phonon, the magnon is a quantized bosonic
particle that represents the propagation of the spin oscillation around its zero
temperature value. Since magnons have the same distribution as phonons, the
same Debye model can be applied, giving for the heat capacity:

FM CM = sfR

(
kBT

2JS

)3/2

(2.7)

AFM CM = safR

(
kBT

2J ′S

)3

(2.8)

where sf and saf depend of the lattice structure, S is the spin, J and J ′ are
the magnitudes of the exchange interaction. In the case of strongly anisotropic
materials, a gap could open in the energy spectrum because of the interaction
of the charge distribution and the crystalline electric field (CEF). This gives
an additional exponential factor:

FM CM ∝ T 3/2e−∆/kBT (2.9)

AFM CM ∝ T 3e−∆/kBT . (2.10)

where ∆ is the energy gap. Several of the systems close to a QCP are heavy
fermion (HF) systems [8]. Heavy fermions are materials with an enhanced
electronic mass m∗, due to the high density of states at EF. For these systems
the electronic specific heat has the same expression as the one of the free
electron gas but with an enhancement of the coefficient of electronic specific
heat γ. In fact the specific heat is one of the most important experimental
quantities to determine whether a system is a HF since the enhanced electron
mass is directly reflected in γ.

2.1.2 Thermal expansion and Grüneisen ratio

The thermal expansion coefficient quantifies the tendency of solids to change
their volume V with a change of the temperature T at constant pressure p.
Thermodynamically the coefficient of volume thermal expansion is:

β =
1
V

(
∂V

∂T

)
p

(2.11)
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Experimentally and in case of a solid, it is more straightforward to measure
the coefficient of linear thermal expansion:

α =
1
L

(
∂L

∂T

)
p

(2.12)

where L is the linear dimension of the solid, and subsequently to add up
the values along three perpendicular directions obtaining β =

∑
i αi, where i

indicates one of the three orthogonal directions.
In order to describe the thermal expansion in a solid as a function of the

temperature, it is useful to have a description similar to the one presented in
the previous section for the specific heat. The model that led to eq. 2.1 is
derived in the harmonic approximation. While this is a good approximation
for the specific heat at low temperatures, it is not for the thermal expansion
since the latter is dominated by anharmonic effects [47]. Indeed, in a rigorously
harmonic crystal the coefficient of thermal expansion must vanish, since the
pressure required to maintain a given volume does not vary with temperature.

Since the phonon frequency of a real crystal depends on the equilibrium
volume, we need to make the occupancy of the normal mode with wave vec-
tor k in branch s dependent on the volume. We therefore introduce ns(k),
defined as ns(k) = (e~ωs/kBT − 1)−1 in order to describe the contribution of
the normal-mode ks to the thermal properties. Next we define the negative
of the logarithmic derivative of the frequency of the mode ks with respect to
the volume:

Γks = −∂(lnωs(k))
∂(lnV )

(2.13)

as the Grüneisen parameter for the mode ks and, weighting this last expres-
sion by the specific heat contribution for each normal mode cs(k), an overall
quantity:

Γ =

∑
k,s Γkscs(k)∑

k,s cs(k)
(2.14)

called the Grüneisen parameter. With these definitions, it can be shown that:

β =
Γc
B

(2.15)

where B = 1/κT is the bulk modulus, inverse of the compressibility at constant
temperature κT = −1/V (∂V/∂p)T , and c the specific heat. In case of one
relevant energy scale, the Grüneisen ratio is constant [47, 49]. Since B is only
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weakly temperature dependent, β(T ) has the same temperature dependence
as c(T ), which at very low temperatures results in:

β(T ) = aT + bT 3 (2.16)

As previously, the T -term is the electronic contribution while the T 3-term
is the phononic contribution. The same estimation is valid in case the specific
heat deviates from this description and other contributions are present. As
in the case of the specific heat, the thermal expansion deviates from this
description for HFs and magnetic materials. Since for each model a single
energy scale is used, the thermal expansion still presents the same temperature
dependence as the one for the specific heat.

The Grüneisen ratio defined in eq. 2.14 is rather cryptic. The Grüneisen
ratio itself expresses the system’s volume dependence to some external param-
eters, like temperature or magnetic field [50]. Intrinsically it gives an estimate
of the dominant energy scale of the system: when Γ is constant to a charac-
teristic value, this indicates that the system is described by a single energy
scale.

2.1.3 Classical phase transitions

In order to describe a second order classical phase transition, the Landau
description is used. In the proximity of the transition temperature Tc and
assuming that the free energy F is analytical and an even function, F can be
Taylor-expanded as:

F = αΦ2 +
β

2
Φ4 +O(Φ6) (2.17)

where Φ is the order parameter characteristic of the transition under investi-
gation. Since the symmetry of the system breaks once it undergoes a phase
transition, the order parameter is used for a thermodynamical description with
symmetry considerations. This validates our assumption of a symmetric free
energy function F . In the disordered phase the order parameter is zero but
its fluctuations are non-zero. The order parameter fluctuations are described
in terms of field theory (called Φ4-theories). In the ordered phase, for T < Tc,
the order parameter Φ is a finite quantity. Examples of order parameters are
the magnetization for ferromagnetism or the energy gap function for super-
conductivity [46, 47].

In addition, the correlation function contains other important information
[51]. Especially it provides the correlation length ξ, that represents a sort of
spatial memory of the system and gives the spatial level of correlation of the
order parameter. Similarly the correlation time τc = ξz gives the temporal
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level of correlation of the order parameter and is related to ξ through the
dynamical exponent z. The typical energy scale associated with the order pa-
rameter fluctuations is ~ωc, where ωc ∝ 1/τc. The correlation length diverges
at the critical temperature as:

ξ ∼ |t|−ν (2.18)

where ν is the critical exponent associated to the correlation length and t =
|(T − Tc)/Tc| measures the distance from the critical point situated at Tc. As
the correlation length, and consequently the correlation time, diverges at the
phase transition, the typical energy scale goes to zero (critical slowing down).

It is important to notice that, for a classical phase transition, the kinetic
and the potential part of the Hamiltonian H commute, therefore the partition
function Z factorizes Zcl = ZkinZpot. This indicates that in a classical sys-
tem static and dynamic decouple and that a classical phase transition can be
studied using effective time-independent theories. Moreover, since close to the
transition the correlation length is the only relevant energy scale, the physical
properties do not change if a rescaling with a common factor is applied. This
gives the homogeneity relation for the singular part of the free energy f for a
system in d dimensions and for a given scale factor b:

f(t, B) = b−df(tb1/ν , BbyB ) (2.19)

where B is the field conjugate to the order parameter and yB > 0 is a critical
exponent [44, 52, 53].

2.1.4 Ehrenfest relation

In a system the maximum usable thermodynamic energy is given by the
Gibbs free energy G [51]. When the systems incurs a thermodynamic transfor-
mation, G changes as the work exchanged by the system with its surroundings,
minus the work of the pressure forces, giving1:

dG = −SdT + V dp (2.20)

where S is the entropy. The Gibbs free energy is used to characterize the phase
transitions. At a phase transition, dG = 0. The order of the transition is then
defined by the order of the lowest derivatives of G that are discontinuous at

1For the sake of completeness, dG = −SdT + V dp +
∑

i µidNi +
∑

i Xidai where µi and
Ni are the chemical potential and the number of particles of the i-component and Xi an
external forces working on the ai parameter of the system. In the presence of a magnetic field
B and with exchange of particles between the one component system and the environment,
we consider dG = −SdT +V dp+µdN −MdB, where M is the magnetization of the system.
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the transition temperature. We classify phase transitions as first order when
the first derivatives of G are discontinuous. We classify phase transitions as
second order when the first derivatives of G are continuous, while the second
derivatives are discontinuous. In the case of a second order phase transition,
since the first derivatives of G are continuous and therefore the Clausius-
Clapeyron relation [54] cannot be applied, the Ehrenfest relation is used:

dTC,s

dp
=

∆αVm

∆(cp/TC,s)
(2.21)

where Vm is the molar volume, TC,s is the Curie or the superconducting tran-
sition temperature, α = V −1(∂V/∂T )p is the linear coefficient of thermal
expansion and cp = T (∂S/∂T ) is the molar specific heat at constant pres-
sure. The Ehrenfest relation is derived by expanding the infinitesimal entropy
change dS in terms of T and p

dS =
(
∂S

∂T

)
p

dT +
(
∂S

∂p

)
T

dp

and considering that the entropy changes above and below the transition are
equal (dS1 = dS2), together with the use of the Maxwell relations.

2.2 Quantum criticality

The renormalization theory with critical exponents is a well established
model to describe classical phase transitions [51, 55]. Different phenomena
such as the evaporation of water at its critical pressure and the demagnetiza-
tion of iron when its temperature is raised have an universal description [45].
The same degree of universality is wished to be obtained for their quantum
counterpart, the so called quantum phase transitions (QPTs).

QPTs are phase transitions that take place at T = 0 (see fig. 2.1). They are
controlled by a non-thermal external parameter r such as pressure or magnetic
field. Since at T = 0 the thermal fluctuations are negligible, the phase transi-
tion at rc is driven by quantum fluctuations associated with Heisenberg’s un-
certainty principle. The classical description of the phase transitions in terms
of correlation function remains valid with the exception that t = (r − rc)/rc.
For pressure induced QCPs r = p, while r = H for a QCP induced by magnetic
field tuning. Therefore the correlation length diverges as:

ξ ∼ |t|−ν (2.22)

and the correlation time τ as ξz. In contrast to the classical case, at the
quantum phase transition the kinetic and potential parts of the Hamiltonian do
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Figure 2.1: Sketch of the T − r phase diagram in the vicinity of a QCP for a material
with an ordered phase. The horizontal axis r represents the control parameter used
to tune the system through the quantum phase transition, while the vertical axis T
is the temperature. The solid line marks the finite-temperature boundary between
the ordered and (thermally) disordered phase. Next to this line (gray region) the
critical behaviour is classical. The classical transition temperature Tc is suppressed
by tuning r and the QPT takes place at rc. At ? the ordered phase can be escaped
by both increasing the temperature (vertical solid arrow) and changing the control
parameter (horizontal arrow). For T > Tc a thermally disordered state is reached,
while for r > rc a quantum disordered state is reached. For r ∼ rc and T > 0 a region
of quantum criticality is present, where both thermal and quantum fluctuation are
important [56, 57]. Here the dashed arrow indicates the most common experimental
probing method, when r = rc and the temperature is varied. Picture adapted from
refs. [4, 44].
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not commute, which implies that the partition function Z = Tre−H/kBT does
not factorize. At a QCP statics and dynamics are coupled. By introducing an
imaginary time direction −iΘ/~ = τ = 1/kBT , where Θ is the real time, the
canonical density operator e−H/kBT in the partition function looks like a time
evolution operator in imaginary time τ . The classical homogeneity function
(eq. 2.19) can then be rewritten for the quantum case as:

f(t, B) = b−d+zf(tb1/ν , BbyB ). (2.23)

The introduction of an imaginary time dimension permits to describe a quan-
tum phase transition in d space dimensions as its classical counterpart in
(d + z) space dimensions. The dynamical properties of the quantum system
are characterized by a fundamental time scale, the phase coherence time τφ,
which has no classical counterpart [43]. Since τφ diverges when T → 0 for all
parameter values, the quantum system has perfect phase coherence even in
the disordered phase [44].

It is natural to ask how quantum mechanics influences the asymptotic crit-
ical behaviour for T > 0 [4, 44]. Two energy scales have to be compared: ~ωc,
the typical energy scale of the long-distance order parameter fluctuations, and
kBT , the thermal energy of the system. Quantum mechanics will be impor-
tant as long as ~ωc >> kBT , while when the thermal energy is larger than
~ωc the description will be purely classical. This brings the (also experimen-
tally) important conclusion that quantum criticality can be studied not only
by varying the control parameter r at T = 0 but also at r = rc by varying
the temperature, since in the quantum critical region both thermal and quan-
tum fluctuations are important (see fig. 2.1). In fact in the region at rc and
at T 6= 0 the system looks critical but is driven away from criticality by the
thermal fluctuations [44, 57].

2.2.1 Quantum phase transitions in fermion systems

Here we briefly discuss the proposed scenario for bulk quantum phase tran-
sitions taking place in fermion systems. We consider bulk quantum phase
transitions, where the degrees of freedom of the whole sample become critical
at the transition, as a model for our systems. In the model we deal with ‘clean’
systems, where translational invariance is unbroken and quenched disorder is
absent [4, 44]. This is not always the case for real system, but the effect of
disorder is possibly not dominant.

The general description of a quantum phase transition in Fermi liquids (FLs)
was initially a study of the ferromagnetic QPT using the renormalization group
method [5]. Subsequently this work was extended and it is now known as the
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Hertz-Millis theory (for so-called ‘itinerant’ QCPs) [6]. The description pre-
sented in the previous section is used to describe spin-density wave transitions
(SDW scenario), with only one type of critical degree of freedom, the long-
wavelength fluctuation of the order parameter. More specific, a QCP exists
due to the competition between the Kondo effect and the RKKY interaction,
made explicit by the Doniach diagram [9]. In addition, the predicted behaviour
of the principal properties of the system (such as specific heat and resistivity)
were evaluated by Moriya [7].

This description for the ‘conventional’ phase transition appeared neverthe-
less to fail in some cases [45, 58] (e.g. in the case of CeCu6 doped with gold
[4]). The scientific community reacted with different opinions. Some said that
the model could be saved if the complexity of the materials was taken into
account, others tried to see it as a failure of Hertz’s theory while there were
those who sought for a new framework for these materials [45]. As for the last
option, a new microscopic model (local quantum criticality) was presented
[22]. This model considers local degrees of freedom instead of long-wavelength
fluctuation of the order parameter. The effect of the quantum fluctuations
(dynamics) is to couple the fermionic bath to the fluctuation of the magnetic
field. On a macroscopic point of view, and as a comparison with the previously
discussed scenarios, next to the classical criticality (which is a growth of global
order in space) and the Hertz’s theory of quantum criticality (which includes
the imaginary time dimension), local quantum criticality considers growth in
time but not in space [45]. Unfortunately a general quantitative prediction
of most of the experimental quantities for local quantum criticality is not yet
available. Nevertheless the model predicts a fractional exponent in the ε/T
scaling in neutron scattering (which followed from the case of CeCu6-xAux

[22]) as well as in the Grüneisen diverging function (as we see in the next
equation 2.25) [59].

2.2.2 Grüneisen ratio at the quantum critical point

The Grüneisen ratio gives an estimation of the energy scale E∗ that dom-
inates in a certain temperature range. When a system is in the temperature
range where an effect (as for instance phononic vibrations or magnetic fluctu-
ations) dominates, specific heat c(T ) and thermal expansion α(T ) present the
same temperature dependence. Hence the Grüneisen ratio Γ(T ) is constant
with a value typical of the dominant energy scale. A common case is the
Grüneisen ratio of a solid at high temperatures (T ∼ ΘD), when Γ = 2 [49]
due to the phonon dominant energy scale (E∗ = ED).

Such a regular dependence is obtained assuming that there is a single energy
scale present in the system. In the quantum critical regime an energy scale
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vanishes, as mentioned in sec. 2.1.3. It has been shown that therefore the
Güneisen ratio diverges at every QCP [23]. Here we present the main steps
of ref. [23]. As discussed in the first part of sec. 2.2, the regime of quantum
criticality is achievable at T → 0 varying the control parameter r, or at r = rc
lowering the temperature T towards zero (see fig. 2.1). Accordingly, when
pressure is the control parameter, the Grüneisen ratio diverges as:

Γcr(T → 0, r) = −Gr
1

Vm(p− pc)
(2.24)

and

Γcr(T, r = rc) = −GTT
−1/νz (2.25)

where ν, the critical exponent of the order parameter, and z, the dynamical
exponent, are defined in the previous section 2.2. The pre-factor GT is a
function containing non universal parameters as T0 and pc and Gr is a function
of only the critical exponents ν and z and the dimensionality d. Eqs. 2.24
and 2.25 follow from the scale invariance presented in eq. 2.23 (for the detailed
derivation see ref. [23]). It is important to notice that the power law of the
Γ(T ) divergence in eq. 2.25 provides important information, giving νz when
α and c are measured as a function of the temperature.

Only pre-factors are needed to correct eqs. 2.24 and 2.25 when doping, the
so-called chemical pressure, is used as control parameter. This is true only if
doping x and pressure p can be quantitatively related as (p− pc) = c(x− xc).
If pressure is replaced by an external magnetic field H, the magnetocaloric
effect (∂M/∂T )H has to be considered instead of α in calculating Γ, giving:

ΓH,cr(T → 0, r) = −Gr
1

H −Hc
(2.26)

Again, in the T → 0 limit, the pre-factor Gr is universal. The T dependence
of Hcr at r = rc is given by eq. 2.25 as well.

As discussed in ref. [23], scaling is applicable under certain conditions:

i Sometimes non-critical contributions can dominate, like in the case of
a AFM SDW QCP (see tab. 2.1). Since the divergence pertains to the
critical contribution Γcr ∼ αcr/ccr, the critical component has to be
carefully discerned from the other components.

ii The scaling ansatz used in ref. [23] to derive Γcr(T, r) is valid below the
upper critical dimension (d + z < 4 in the Φ4 theories). At the upper
critical dimension, logarithmic corrections to scaling arise. Above the
upper critical dimension, the scaling argument can be spoiled by the
presence of so-called ‘dangerously irrelevant operators’.
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iii At the QCP more than a single diverging time scale can be present.
This can indeed lead to a breakdown of simple scaling relations [60]. In
this case more scaling dimensions have to be considered in order to result
in a divergence of the Günesein ratio.

In ref. [23] the case of SDW QCPs is widely discussed, since many magnetic
materials presenting QCPs are itinerant ferromagnets and these are mainly
systems above the upper critical dimension. We refer to this paper for a more
detailed description. The results for αcr(T ), ccr(T ) and Γcr(T ) at r = rc are
presented in tab. 2.1. In the following chapters we analyse one system with d=3
and z=2 (AFM QCP in Ce(Ru,Fe)2Ge2, chap. 4) and one system with d=3 and
z=3 (FM QCP in U(Rh,Ru)Ge, chap. 5). In fig. 2.2 we present the behaviour
Γcr(T ) for d=3 and z=3, in order to simplify the description in chap. 5. In
the plot three curves are shown. These curve represents (T 2/3log(T0/T ))−1,
where T0 is the temperature where the logarithmically diverging function of
the specific hear is predicted to be zero. In all three curves the same T0 is
used. Note that we are interested only in the temperature range T � T0,
e.g. where the predicted function for the critical specific heat ccr > 0. In this
temperature range Γcr(T ) has a minimum at Tmin = T0e

−3/2.

d=2 z=2 d=2 z=3 d=3 z=2 d=3 z=3
αcr ∼ loglog(1/T ) log(1/T ) T 1/2 T 1/3

ccr ∼ T log(1/T ) T 2/3 −T 3/2 T log(1/T )
Γcr ∼ loglog(1/T )

T log(1/T ) T−2/3log(1/T ) −T−1 (T 2/3log(1/T ))−1

Table 2.1: Theoretical prediction for the SDW QCPs in the quantum critical regime
r − rc � T 2/z. Table adapted from ref. [23].

2.3 Superconducting ferromagnets

Up to now, four superconducting ferromagnets (SCFMs) have been discov-
ered. These are listed in table 2.2 together with several of their characteristic
parameters. As the name suggests, SCFMs become superconducting in the
ferromagnetic phase. Their superconductivity is unconventional, i.e. it can-
not be described by the standard Bardeen, Cooper and Schrieffer (BCS) model
[64].
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Figure 2.2: Predicted behaviour of Γcr(T ) (d=3 and z=3) for T → 0 and r = 0. The
thick solid line represents Γ = (T 2/3log(T0/T ))−1. The top line represents 0.5Γ, while
the lower line represents 2Γ. The horizontal axis is normalized to T0. The vertical
asymptote of the function is at T = T0 and the vertical dashed line indicates Tmin.

In the BCS model, two electrons with energy E ∼ EF and with antiparallel
spins form a state (Cooper pair) under the influence of an attractive force
due to lattice vibrations. A two-electron system can have S = 0 or 1 and
L = 0, 1, 2, 3, ... . The Cooper pair is a quasi-particle with quantum numbers
that are superpositions of the electrons quantum numbers and obeys the Pauli
principle. Since the wave function is shown to be antisymmetric, it has to be
formed by a combination of odd-spatial part and even-spin part or vice versa.
It could therefore be in a spin-singlet state (S = 0) represented as:

φs =
1√
2

(| ↑↓〉 − | ↓↑〉) (2.27)

with L = 0 (s-wave) or L = 2 (d-wave), or in a spin-triplet state (S = 1)
represented as:

φt =


| ↑↑〉 (ESP)
1√
2
(| ↑↓〉+ | ↓↑〉)

| ↓↓〉 (ESP)

(2.28)

with L = 1 (p-wave) or L = 3 (f -wave) and where ESP denotes the equal-
spin pairing states. A standard Cooper pair has S = 0 and L = 0. Every
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structure TC

(K)
Tsc

(K)
pc

(kbar)
m0

(µB/U atom)
γ
(J/mol K2)

UGe2 [24, 25] orthorhombic 53 0.8a 16.5 1.5‖a 0.032
URhGe [26, 27] orthorhombic 9.5 0.25 - 0.42‖c 0.160

UIr [28, 61, 62] monoclinic 45 0.1b 24 0.50‖[10-1] 0.049
UCoGe [29, 39, 42] orthorhombic 3 0.6 14 0.07‖c 0.057

Table 2.2: List of superconducting ferromagnets, in order of discovery, together with
their characteristic parameters. TC and Tsc are the FM and SC transition tempera-
tures, respectively, while pc is the critical pressure for suppression of FM, m0 is the
ordered moment and γ is the Sommerfeld coefficient of the electronic specific heat.
For a description of those materials one should refer to ref. [63] or directly to the
original references reported in the table.

aAt a pressure of 1.2 GPa
bAt a pressure of 2.7 GPa

material that presents superconductivity with electron pairing having S 6=
0 and L 6= 0 is called a non s-wave or an unconventional superconductor.
Another peculiarity of unconventional SC is that the energy gap function has
a lower symmetry than the Fermi surface (and therefore of the crystal lattice).
Unconventional superconductivity has been found in several materials in the
last forty years, by instance in 3He [65, 66], heavy fermions [31, 67, 68, 69, 70,
71, 72, 73, 74, 75] and high temperature superconductors (HTSCs) (cuprates
[34] or the recently discovered iron pnictides [35, 36]).

2.3.1 Coexistence of superconductivity and itinerant
ferromagnetism

Since a magnetic field destroys conventional superconductivity, as magnetic
impurity atoms do, the standard BCS theory cannot describe the coexistence
of magnetism and SC. Therefore the superconductivity in the SCFMs should
be non s-wave. Nevertheless, around 1980, several compounds presented com-
peting superconducting and antiferromagnetic ground states (as for instance
the HF SC UPt3 [72, 73]) and it was theoretically recognized that under spe-
cial conditions SC may coexist with AFM. In this case the AFM electron spins
arrange themselves in an antiparallel configuration, hence the singlet pairing
is still possible. Around the same time, ESP states were theoretically pre-
dicted for superconductivity in itinerant ferromagnets (p-wave SC) [30], with
the pairing interaction mediated by the exchange of longitudinal spin fluc-
tuations. Twenty years later, this prediction was experimentally confirmed
with the discovery of high pressure SC in the ferromagnetic UGe2 [24, 25].
Although the pairing glue of unconventional SC is still an open issue, the low-
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energy excitations known as spin fluctuations seem to be the best candidate.

Figure 2.3: The p-wave superconducting transition temperature Tsc as a function of
the Stoner parameter Ī, in the paramagnetic (PM) and ferromagnetic (FM) phases.
Tsc is scaled and normalized by the Fermi temperature TF. The arrows indicate the
spin up (↑) and spin down (↓) phases as the relative ESP superconducting transition
takes place. Picture taken from ref. [30].

In the scenario of ref. [30] the same electrons are responsible for both SC
and FM that coexist near to a FM QCP. The magnetic behaviour is described
by a mean-field theory in terms of a Hubbard exchange parameter Ī and a
Stoner enhancement factor S = (1 − Ī)−1. Fig. 2.3 describes the prediction
of the model for the superconducting transition temperature Tsc in the PM as
well as in the FM region as a function of the exchange parameter Ī. In this
model superconductivity is destroyed at the FM QCP, while it appears both in
the paramagnetic (PM) (Ī < 1) and in the FM (Ī > 1) phases. Tsc for the spin
up and spin down states is predicted not to be the same, although this has not
yet been experimentally observed. Whether both phases are present depends
sensitively on the details of the band structure. The model predicts that SC
would reappear in the PM phase and, in the absence of a magnetic field, all
three components of φt would have the same Tsc. The SC phase in the PM
region has not been experimentally observed yet. In the case of UGe2 and UIr,
a possible explanation is that in the FM phase the ferromagnetic spin waves
(magnons) couple to the longitudinal magnetic susceptibility, which enhances
the SC transition temperature to values experimentally available [63, 76]. The
description in fig. 2.3 leads to the generic phase diagram presented in fig. 2.4
(left panel).

For UCoGe under pressure, the experimental phase diagram [42] consis-



2.3 Superconducting ferromagnets 21

Figure 2.4: [left] The generic phase diagram for a SCFM as follows from the model
presented in ref. [30]. SC appears at the left and right sides of the QCP. In the left
lobe, SC coexists with FM. The right SC lobe has never been experimentally observed.
Picture adapted from ref [76]. [right] Schematic pressure-temperature phase diagram
of the superconducting ferromagnet UCoGe [77]. N is the normal paramagnet phase,
F is the ferromagnet phase, S is the paramagnet superconducting phase and FS is
the multi-domain ferromagnet superconducting phase. All the lines represent second-
order phase transitions

tently differs from the theory proposed by ref. [30]. When pressure is applied,
FM is suppressed at pc. Interestingly the SC transition temperature not only
is enhanced but also remains non-zero for p > pc (in the PM phase). For higher
pressure SC is depressed. With symmetry considerations, ref. [77] presents a
theoretical model where the behaviour of UCoGe is compared to the case of
3He and explained in terms of two band superconductivity with triplet pairing.
The model is schematically presented in fig. 2.4 (right panel). In a two band
FM the superconducting state is still believed to be formed by either spin-up
electrons from one band or by the spin-down electrons from the other band
[78]. An analysis of the free energy F shows that TC should decrease when
magnetic field is applied perpendicular to the direction of the spontaneous
magnetization (as for Tsc [39]) [79].
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3 Experimental methods

[...] le loro idee camminano
sulle nostre gambe

This chapter is dedicated to the description and discussion of the experimen-
tal techniques used during the thesis work. All the samples have been prepared
and measured in Amsterdam, at the van der Waals-Zeeman Institute. They
have been characterized by means of back-scattering Laue diffraction, EPMA
(Electron Probe Micro-Analysis), electrical resistivity and ac-susceptibility.
Thermal expansion, magnetostriction and specific heat have been investigated.
In addition, low temperature specific heat (at the University of Karlsruhe, Ger-
many) and high field magnetoresistance (at HFML, Nijmegen) measurements
have been carried out.

3.1 Cryogenics techniques

To perform measurements at low temperatures, several cryostats have been
used:

A home-made 4He bath cryostat (the so called glass-dewar system, since
the liquid N2 and 4He reservoirs are made of glass) in the temperature
range 2 - 300 K. A thermal expansion insert can be fitted in this cryostat
for operation in the temperature range 2 - 200 K. The temperature is
controlled by a carbon-glass thermometer and a manganin wire as heater.

A 3He refrigerator, Heliox VL (Oxford Instruments) [80], in the temper-
ature range 0.23 - 15 K with a 14 T superconducting magnet. At the
tail of the insert, a multi-purpose sample platform is mounted: at this
level the temperature is controlled by a RuO2 thermometer and a heater
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(manganin wire). Both the thermometer and the heater are connected
to an ORPX resistance bridge (Barras Provence). Resistivity, magne-
toresistance, ac susceptibility, thermal expansion and magnetostriction
measurements are reported.

A 3He/4He dilution refrigerator, Kelvinox MX100 (Oxford Instruments)
[81], in the temperature range 30 mK - 1 K with an 18 T superconducting
magnet and a field compensation coil at the level of the mixing chamber.
A multi-purpose sample platform is mounted with a temperature control
set-up (thermometer-heater) like the one used in the Heliox. In this
thesis, thermal expansion and magnetostriction measurements carried
out in this cryostat are performed.

A dewar with a home-built 3He refrigerator for specific heat measure-
ments down to 0.5 K with a 17 T superconducting magnet [82]. The
temperature is measured with a special parallel resistor as thermometer
with a very low field dependence [83]. The cryostat is a closed 3He system
with a storage gas vessel at room temperature Troom and a cryopump
for evaporative cooling.

A bottom loading 3He/4He dilution refrigerator (University of Karlsruhe,
Germany) for specific heat data in the range 0.10 < T < 1 K in small
applied magnetic fields.

The Heliox and Kelvinox inserts are controlled by LabVIEW [84] programs
provided by Oxford Instruments. To integrate these instrument controls, ad-
ditional LabVIEW programs have been written to implement resistivity (and
magnetoresistance), susceptibility and thermal expansion (and magnetostric-
tion) data acquisition. In the thermal expansion programs, communication
between the different instruments and automatic stabilization of the temper-
ature have been implemented.

3.2 Sample preparation

All the samples in this thesis have been prepared in Amsterdam at the
van der Waals-Zeeman Institute (WZI, UvA) using high purity elements (3N
for U, Rh and Ru, 4N for Co and 5N for Ge). We used natural Uranium
(Goodfellow) for the U(Rh,Ru)Ge samples and depleted Uranium (Brunswick)
for the UCoGe samples.

The polycrystals are prepared in a home built mono-arc furnace. The cham-
ber is evacuated to a pressure of 10−7 mbar after which the melting process
takes place in an argon atmosphere of 0.5 bar. The samples are molten and



24 3. Experimental methods

flipped several times to increase the homogeneity. The sample mass is typically
3-4 g.

The single crystals are grown by Dr. Y. K. Huang using the Czochralski
method in a tri-arc furnace, from a polycrystalline batch of ∼ 15 g. The
single crystallinity is checked using X-ray back-scattering Laue diffraction.
The same technique is afterwards used to orient the single crystalline samples.
The incident beam is WLα radiation with wavelength λ = 1.4801 Å and the
back scattered X-ray is recorded on films Polaroid 57.

Different sample shapes are obtained using an AGIEPLUS spark erosion
machine with a position accuracy of 5 µm. Bars and cubes are cut by use of a
conductive wire (copper saw). The opposite surfaces of the cubic samples are
then made plane parallel (for thermal expansion experiments) using a rotating
disk passing over the surface. For the resistance measurements the surface
defected by spark erosion is removed by polishing (the final polishing is made
with a grinding disc of 800 µm). The typical dimensions are 1 × 1 × 5 mm3

for the bars and 5× 5× 5 mm3 for the cubic samples.
The U(Rh,Ru)Ge (only for the polycrystalline samples) and UCoGe samples

are wrapped in Ta foil and annealed in evacuated water free quartz tubes
(p = 10−7 mbar) using different annealing procedures to improve the sample
quality. All the U(Rh,Ru)Ge polycrystalline samples were annealed under
high vacuum in quartz tubes for 10 days at 875 ◦C. The UCoGe single crystals
were annealed at temperatures between 850 ◦C and 1250 ◦C, from one to three
weeks (the details will be discussed in chapter 6).

The phase homogeneity and stoichiometry of the samples are investigated
with Electron Probe Micro Analysis (EPMA). A JEOL JXA-8621 equipment
present in the WZI has been used.

3.3 Sample characterization

The samples are characterized by means of electrical resistivity and ac sus-
ceptibility techniques. The resistivity is used to investigate the quality of
the samples (via the residual resistance ratio, RRR = RTroom/R1 K) and
the superconducting and ferromagnetic properties for UCoGe samples. In
Ce(Ru,Fe)2Ge2 and in U(Ru,Rh)Ge the resistivity technique is used to inves-
tigate the critical behaviour of the systems. The ac susceptibility technique
has been used as a sensitive probe for magnetic ordering.

The resistivity of the samples is measured using a standard four point
method (see fig. 3.1). The current and voltage leads are thin copper wires
(∅ = 30 µm) of which one end is soldered to the contact point on the copper
sample holder. The other end is connected to the sample using conductive
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Figure 3.1: Schematic four point resistivity method. Typically the length L is a few
mm (1.5 to 5 mm) and the area A is 1 mm2. V indicates the wires where a voltage
is applied while I indicates those where the current is measured. The total resistance
of the sample is in the order of about ∼ 10 mΩ.

silver paint. In this way a contact resistance of a few Ω can be achieved. This
value is low enough to prevent Joule heating even at the lowest temperature
(PJ ∼ 0.01 µW, three order of magnitude smaller than the cryostat cooling
power). Surface conditions like roughness or cracks can increase the contact
resistance by one order of magnitude.

The resistance is measured in the temperature range 0.24-9 K using a Linear
Research AC Resistance Bridge model LR700 operating at a frequency of 16
Hz and excitation currents of 30−100 µA. The temperature is swept from ∼ 9
K downwards at the rate 0.05 K/min. For magnetoresistance data, the field
sweep rate is typically 0.02 T/min upwards and 0.05 T/min downwards.

The ac-susceptibility is measured with a mutual inductance transformer
method [86]. A driving magnetic field Hac is provided by a current in the
primary coil, made of superconducting wire (see fig. 3.2). A current is induced
in the secondary coils. The secondary coils are wound in opposite directions
as to compensate the induced voltage. A sample can be placed in one of the
two coils, destroying the balance: the voltage which is observed at the output
of the coils, Vac, gives therefore a direct measure of the magnetization of the
sample, Mac. The ac-susceptibility can be calculated from the driving field
Hac and the induced magnetization Mac using:

Mac = χacHacsin(ωt)

where ω = 2πf and f is the driving frequency [87]. In this thesis χac is
measured with the LR700 bridge at a driving field in the order of 10−5 T and
a fixed frequency f = 16 Hz.



26 3. Experimental methods

Figure 3.2: Schematic view of the mutual inductance transformer coil used in ac-
susceptibility measurement. Picture taken from ref. [85].

3.4 Dilatometry

3.4.1 Thermal expansion

To measure the thermal expansion coefficient, we use a three terminal ca-
pacitance method [89]. A schematic drawing of the measuring principle is
presented in fig. 3.3(a). The equivalent electronic circuit is in fig. 3.3(b): the
measured capacitance is C12 and the other two grounded capacitances, Cg1

and Cg2, are used to shunt the noise.
A simple relation connects the measured capacitance C and the gap distance

d between the plates:

d =
εA

C
(3.1)

where ε = ε0εr with εr the dielectric constant of the medium between the
plates and A is the area of the plates.

The three terminal capacitance method is so far the most sensitive method
to measure thermal expansion (∆l/l = 10−10), better than optical methods
(best sensitivity ∆l/l = 10−9) which have on their side a better accuracy
[49] . Nevertheless, for thermal expansion, sensitivity is needed to detect the
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Figure 3.3: (a) Schematic drawing of the three terminal capacitance method in the
normal configuration (from ref. [88]). The capacitance is measured between two plates
(at LOW and HIGH voltage) with a gap distance g. The HIGH plate is connected to
the sample. The body of the cell is connected to ground. (b) Equivalent circuit for
the normal configuration [89]: C12 is the capacitance between plates in (a). Cg1 and
Cg2 are shunt capacitances, from the plates to ground.

difference in gap distance more than the gap distance itself. The sensitivity of
the cell varies proportional to the square of the distance between the plates as

∆d = −εA
C2

∆C. (3.2)

Using eq. 3.2 we can easily see that a big capacitance, for a fixed resolution
of the bridge ∆C, allows to measure smaller values of ∆d. On the other
hand a big capacitance value implies less precision of the reading device. A
compromise between these two different effects has been found for typical
values of C ∼10 pF.

The cells used in this work employs the three-terminal capacitance method
for a parallel-plate capacitor of area A (fig. 3.4). The cell, constructed of
oxygen free high conductivity copper (OFHC Cu), was designed and made at
the University of Amsterdam [90]. The distance d between the upper plate
and the lower plate is determined by three copper spacers (6) with thickness
in the order of 40-120 of µm (only one is shown in the figure). The upper plate
(1) is fixed to the cell and isolated from the guard ring (5) by a thin layer of
kapton (25 µm). The lower plate (2) is connected to a disk (8) by three rods
(only one is shown), which pass through the bottom of the cell. The sample
is clamped between the lower plate and the bottom of the cell by tightening a
screw (4) which exerts a small force on the plate-like spring (9). In this way
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Figure 3.4: Schematic drawing of the Amsterdam cell. 1. upper plate 2. lower plate
3. sample 4. spring and screw 5. guard ring (upper plate) 6. copper foil 7. guard
ring (lower plate)

a change of the sample length results in changes of the distance between the
upper and lower plates and therefore a change of the capacitance value.

This kind of cell has the advantage that it is small (diameter 24 mm) and
easy to mount in the cryostat. Moreover the shape of the sample is not crucial
as long as there are two plane parallel surfaces. However, a drawback is that
the sample length is fixed at 5 mm. For smaller samples this problem can be
overcome by using a copper spacer to adjust the total length to 5 mm.

The capacitance is measured with an Andeen-Hagerling capacitance bridge.
For this bridge a high stability is ensured by an oven controlled temperature
of the reference capacitor. In the experiments in the Heliox and Kelvinox the
model AH2500 is used, while for the experiments in the glass-dewar system
the model AH2700A is used with a variable frequency option (50 Hz-20 kHz).
For both models a 1 kHz-15 Volt configuration has been used. The nominal
resolution for both bridges is 10−7 pF, the real resolution can be even one
order of magnitude bigger (other noise sources, like remaining vibrations or
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bad grounding). Therefore the wires have to be carefully connected to the
sample platform. Using an averaging procedure (typically 60-120 sec) a ∆l/l =
2 · 10−10 for a sample of 5 mm can be obtained. This enables us to measure
length changes as small as 10−2 Å.

The cell is attached to the same sample platform which holds the ther-
mometer and the heater. One cell is used for the Heliox and Kelvinox (cell-1),
while a second cell is used in the glass-dewar system (cell-2). The effective
value of εA was measured at room temperature for each cell, considering the
dielectric constant in helium εr ∼ 1. The effective value was determined from
the slope of the capacitance C plotted as function of 1/d, obtained by using
copper foils of different thickness [50]. This experimental method overcomes
errors due to stray capacitances assuming the area A as ideal. The values are
εA = 9.73 · 1016 Fm for cell-1 and εA = 9.45 · 1016 Fm for cell-2 with an error
of ± 3%.

The linear thermal expansion coefficient is defined as α = L−1∆L/∆T ,
where L is the length of the sample. α is measured using a step-wise heating
method (glass-dewar system up to 20 K, Heliox up to 15 K and Kelvinox up
to 1 K) as well as a continuous heating method (for the glass-dewar system,
T > 10 K). For the step-wise method, steps of 10 mK up to 0.5 K have
been taken. Specific LabVIEW software has been written to check for the
stability of temperature and capacitance and to select the next temperature
after the data point was recorded, for automatization of the process. In the
case of the continuous method a typical rate of ∼10 K/h was used, i.e. slow
enough to garantee that the temperature is homogenous over the system cell-
thermometer. The volumetric thermal expansion coefficient is then calculated
as β =

∑
i αi, with i = a, b, c (the crystallographic cyrstal axes of single

crystalline samples) or i = x, y, z (the three orthogonal direction of the cubic
polycrystalline sample1).

The thermal expansion coefficient of the sample is given by:

α = − 1
L

(
∆d
∆T

)
cell+sample

+
1
L

(
∆d
∆T

)
cell+Cu

+ αCu. (3.3)

The first term corresponds to a change of the gap distance with the sample
mounted. The second term is the so called cell-effect, measured with a 5 mm
copper piece in the cell instead of the sample: this term ideally measures
the thermal expansion of the thin copper spacers (6), however it appeared
that other contributions are present (see 3.4.2). The last term is the thermal
expansion of copper [88], which corrects for the contribution from the walls of
the cell.

1In principle just one direction of the polycrystal could be enough.
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3.4.2 The cell effect
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Figure 3.5: Cell effect for cell-1. The y-axis shows the change in gap distance with a
change of the temperature, in Å/K: to calculate the cell-effect for the specific sample
this value has to be divided by the sample length, with a proper conversion factor.
The cell-effect becomes important at T ≤ 2 K. A fit (not shown) is used to correct
the data in the increasing part of the curve (0.1 K < T <20 K) while in the range
30 mK< T < 100 mK the data themselves are interpolated to be subtracted from the
raw data.

The origin of the cell effect is still quite puzzling but the effect is well re-
producible and therefore a correction curve for both cells can be constructed
(see fig. 3.5 for cell-1 and fig. 3.6 for cell-2). In the temperature range 5-150
K the correction due to the cell effect is in general small (< 1% of the α(T )
of a typical sample). At high temperatures some irreproducibilities are found
(near 220 K) which limits the use of the cell up to ∼ 200 K (typically 150 K).
These irreproducibilities are likely related to the kapton in the cell, used to
isolate the plates from the guard ring [91]. For T ∼1 K the correction be-
comes comparable to the α(T ) of the sample. Surprisingly, upon lowering the
temperature below 1 K, the cell effect shows a large pronounced minimum (at
100 mK, fig. 3.6). Also this effect reproduces well and the thermal expansion
data reported in chapter 6 have been corrected for it.

The origin of the minimum is unclear, but possibly it is due to excitations in



3.4 Dilatometry 31

0 5 0 1 0 0 1 5 0- 1 5

- 1 0

- 5

0

5

�

 

�d
/�T

���
���

T  ( K )

Figure 3.6: Cell effect for cell-2. Different effects are probably competing, considering
the abrupt change around 30 K, where the cell effect is almost zero. To compensate
for this cell effect, interpolated data are subtracted from the samples data sets.

a two level system (Schottky anomaly [46]). For the easiest case of a two levels
system with energies ε1 and ε2 separated by an energy gap ∆ = (ε1 − ε2)/kB,
the specific heat is:

cSch = R

(
∆
T

)2 e∆/T

(1 + e∆/T )2
(3.4)

where R=8.314 J/mol K is the gas constant. A similar behaviour applies
for the thermal expansion. A magnetic field changes the energy gap ∆ and
therefore the contribution of the Schottky anomaly. A tentative comparison of
the cell-effect with the Schottky anomaly is made in fig. 3.7, at low temperature
and for B = 0, 3 and 5 T. The shape of the anomaly present in the data is
similar to the predicted anomaly of a two level system for a temperature
range that increases with the field, but the match between data and fit is
not completely satisfactory which could suggest the presence of a multi level
Schottky system 2. This suggests that the fit of the data with a Schottky

2We could as well have made a kapton sample to be measured in the cell (see ref. [91] for
high T data)
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anomaly function could be correct but that maybe more than two levels are
present.
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Figure 3.7: Cell effect at low temperature, in B = 0, 3 and 5 T. In the same color
as the data, the Schottky fitting function for each data set. The temperature range
where the data are well fit by the curve increases with the field.

3.4.3 Magnetostriction

The linear magnetostriction λ = ∆L/L is measured for a sample in the
capacitance cell by slowly sweeping the magnetic field B and recording the
change in capacitance. The magnetic field rate (dB/dt = 0.05− 0.02 T/min)
is slow enough for heating (due to the eddy currents) to be negligible. The
coefficient of linear magnetostriction is denoted as τ = dλ/dB. The cell effect
in the magnetostriction data is negligible, having a contribution in the order
of 10−8 (data not shown), from two to four orders of magnitudes smaller than
the magnetostriction of the samples.

3.5 Specific heat

In the temperature range 0.5-50 K the specific heat is measured in the 17 T
system, using a semi-adiabatic method. A heat pulse (providing a known
amount of heat Q with a duration of 15-30 seconds) heats up the sample with
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a temperature step ∆T . The heat capacitance is calculated as C = Q/∆T .
The samples have a typical mass of 3 g and these are placed in a copper clamp
in a gold-plated cold-rolled silver sample holder. The accuracy in the whole
temperature range is 2% [92].

In the low temperature range 0.1-1 K, a heat pulse technique especially
designed for small sample has been used [93]. The sample, with a mass of
around 0.1 g, is placed on a Si plate which is heated with a short heat pulse
(0.01− 0.1 ms).

For both techniques, a correction for the sample holder was taken into ac-
count.
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4 Field induced quantum criticality
in Ce(Ru,Fe)2Ge2

Caterpillar: Who are you?
This was not an encouraging opening for a
conversation [...]
”I ca’n’t explain myself, I’m afraid Sir,”
said Alice, ”because I’m not myself, you see.”

L. Carroll

In this chapter we investigate the antiferromagnetic quantum critical point
(AFM QCP) in the heavy fermion system CeRu2Ge2 when Ru is doped with
76 at.% Fe [37]. The parent compound CeRu2Ge2 was studied intensively, be-
cause it is a prominent member of the family of the Ce 1:2:2 compounds.
Recently, doping studies in CeRu2Ge2 attracted attention, because of the
possibility to induce a magnetic QCP. Neutron scattering experiments on
Ce(Ru0.24Fe0.76)2Ge2 demonstrated a peculiar type of quantum criticality,
where both local and long-range fluctuations of the local moments are present,
but only the latter are critical [22, 37]. Here we further investigate the quan-
tum critical behaviour in Ce(Ru0.24Fe0.76)2Ge2 by specific heat, thermal ex-
pansion and resistivity measurements. We study the thermal properties of
a single crystalline sample Ce(Ru1-xFex)2Ge2 with the nominal concentration
xcr=0.76 [94, 95]. The presence of weak antiferromagnetic order in the sample
(TN ∼ 1.2 K) gives the opportunity to focus on the field-induced AFM QCP:
magnetoresistance and magnetostriction measurements are used to detect the
transition from the AFM to a polarized state. Resistivity, specific heat and
thermal expansion measurements are subsequently carried out in several mag-
netic fields (B ≤ 6 T) and the behaviour in the ordered and in the polarized
phases is analyzed.
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4.1 Introduction

As a member of the Ce 1:2:2 family, the correlated metal system CeRu2Ge2

was already studied in the eighties. The physics of Ce-based compounds at-
tracted much attention because of the discovery of unconventional supercon-
ductivity in CeCu2Si2 in 1979 [31]. The ground state of the Ce-based heavy
fermion (HF) systems is generally determined by the hybridization phenom-
ena of the local 4-f electrons interacting with the s, p or d electronic bands
[96]. HF properties naturally arise from a Kondo resonance peak at the Fermi
energy EF [8].

Initially, CeRu2Ge2 was widely studied because of its similarities to
CeCu2Si2 and the hope to find a second Ce-based heavy fermion supercon-
ductor [97]. Later, when no sign of superconductivity was found, CeRu2Ge2

attracted attention because of the suggestion that it could be driven to a state
with strongly enhanced electronic effective masses by applying chemical or hy-
drostatic pressure [98]. The observation that CeRu2Ge2 is on the verge where
the Kondo effect suppresses the RKKY interaction [99] let to detailed pressure
and doping studies, as discussed further on.

CeRu2Ge2 belongs to the CeM2X2 family (where M is Cu, Ag, Au, Ru,
or Ni and X is Si or Ge) just like the famous heavy fermion superconductor
CeCu2Si2 [31] and the heavy fermion system CeCu2Ge2 [70, 71]. This Ce-
based ternary family of compounds includes systems with very different ground
states (some examples are listed in ref. [100]). CeRu2Ge2 crystallizes in the
tetragonal ThCr2Si2 structure [101]. The conventional unit cell contains two
formula units and the lattice parameters are a = 4.256 Å and c = 10.000 Å [99]
(see fig. 4.1).

In early works on this system, specific-heat data taken on a sample with
nominal composition CeRu2.16Ge2 show a phase transition peak below 10 K
(with a weak shoulder on the high temperature side of the peak) and a
Schottky-peak at around 220 K due to the crystalline electric field (CEF)
splitting [71] (fig. 4.2 a, upper frame). A later neutron scattering study [99]
yielded evidence for ferromagnetic (FM) order below TC=7.5 K and a sec-
ond weaker phase transition at T=8.5 K. The saturation moment amounts to
1.98±0.03 µB at 1.5 K and the ordered moment is aligned along the tetragonal
axis [99, 102]. The high temperature peak in the specific heat is a measure of
the CEF splitting of the ground state: in the tetragonal symmetry one expects
the J=5/2 level of the Ce 4f1 state to split into three doublets. The entropy
of the lowest doublet is fully accounted for by the value of Rln2 reached at
20 K (see fig. 4.2 a, lower frame). The Schottky anomaly at high temperature
is well accounted for by the remaining two doublets at 500 K (total entropy
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Figure 4.1: Tetragonal unit cell of CeRu2Ge2 (ThCr2Si2 structure [101]) with lattice
parameters a=4.256 Å and c=10.000 Å [99].

Rln4) and 750 K (total entropy Rln6) [71] (see fig. 4.2 b).
Specific heat experiments [102] show that for a high-purity single-crystalline

sample of CeRu2Ge2 the magnetic transition results in only one sharp anomaly
at 7.91 K. This suggests that the secondary transition is present in low purity
poly-crystalline samples only, although more recent studies still claim the pres-
ence of the second anomaly (the AFM order that will appear under pressure
or doping [103]). The system is characterized by a small mass enhancement
(γ=20 mJ/mol K2), due to the low temperature magnetic order, and a Kondo
temperature TK ∼ 2 K [99]. This means that the RKKY temperature TRKKY

is comparable with the Kondo temperature TK and it places this compound
in an interesting region of the Doniach diagram, as illustrated by fig. 3 in
ref. [100]. The system is therefore in the heavy fermion regime close to nFL
behaviour, which makes it a promising candidate to be tuned to a QCP by
tuning a control parameter.

High pressure studies have been carried out on polycrystals [104, 105, 106]
and single crystals [107, 108]. These studies reveal a complex phase diagram
with FM and AFM phases and an AFM QCP at the critical pressure pc=67.5
kbar [107]. For pressures p > pc, the FL behaviour is slowly recovered. Resis-
tivity measurements [107] show that the single-impurity Kondo temperature
is never the dominant energy scale in the phase diagram. Here three different
regimes can be discerned: (i) at low J the RKKY is dominant leading to local
moment magnetism, (ii) for J ∼ Jc close to the QCP a Kondo-like moment
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Figure 4.2: (a) Upper frame: electronic specific heat of CeRu2.16Ge2 [71]. The arrow
indicates a weak secondary transition. The high temperature line represents the
Schottky anomaly related to the CEF splitting (see text). Lower frame: entropy
divided by gas constant S/R as a function of T . Figure adapted from ref. [71]. (b)
J=5/2 level splitting in three doublets due to the crystal field [71].

compensation suppresses TN, but for J = Jc residual magnetic correlations
are present resulting in enhancement of the effective mass, and (iii) at J > Jc

the system behaves as a Kondo lattice with a low effective mass [107]. Never-
theless TK has been proved to increase while the magnetic order is suppressed
[109].

The evolution of the magnetic state by doping has been widely studied as
well, and can be compared with the phase diagram under pressure [94, 95,
107, 110]. For instance, in ref. [107], the phase diagram of CeRu2(Ge,Si)2
was found to be in good agreement with the pressure diagram of the pure
compound. In ref. [94] the p− T diagram of CeRu2Ge2 is compared with the
effect of Fe-doping in CeRu2Ge2 (see fig. 4.3). The end compound CeFe2Ge2

is isostructural with CeRu2Ge2 and is a non-magnetic correlated metal with
γ=270 mJ/mol K2. In the Fe-doped compound, part of the Ru is replaced by
Fe atoms, which are smaller, resulting in a positive chemical pressure on the
Ce atoms [107].

Both tuning parameters result in an evolution from a FM to an AFM phase
with an AFM QCP at the critical Fe concentration xc = 0.76±0.05 in case
of doping [94]. Inelastic neutron scattering (INS) studies on poly-crystalline
samples in the AFM state (x=0.65), at the QCP (0.76), and in the FL regime
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Figure 4.3: Magnetic phase diagram of CeRu2Ge2 versus pressure (upper axis, dashed
lines) and of Ce(Ru1-xFex)2Ge2 (Fe-doping in the lower axis, empty diamonds: FM
phase, stars: AFM phase). Filled circles give the pressure dependent TK. The shaded
part gives the pressure dependent FL region where the resistivity is ∝ T 2. The solid
lines are guides to the eye. See ref. [94] for Fe-doped data and ref. [107] for pressure
data. Picture taken from ref. [94].

(0.87) [110] revealed a local moment magnetic response on the Ce-ions at high
temperatures for all concentrations studied. Measurements of the samples
at the QCP and in the FL regime showed that for both compositions the
characteristic time scale on which the moments fluctuate increases inversely
proportional to the distance to the critical point. The decay of the fluctuations
is however quite different: exponential in time away from the QCP and non-
single exponential at the QCP. It is not clear how to connect these to FL and
nFL decay mechanisms.

Inelastic neutron scattering experiments on a single crystal prepared by Dr.
Y. K. Huang (WZI) at the critical Fe concentration are reported in ref. [37].
The magnetic scattering at low temperature is shown in fig. 4.4 (left panel).
This scattering was separated from the incoherent nuclear scattering and the
weak background scattering by subtracting the signal at T=56 K from the
signal at T=2 K. The results showed that, upon lowering the temperature
at the QCP, the Ce moments become increasingly shielded by the conduc-
tion electrons. This results in a long-range incommensurate magnetic order
at low temperatures, with a propagation vector (0,0,0.45) and an ordered mo-
ment of only 0.18±0.03µB/Ce. However, some moments survive down to the
lowest temperature, while some others are fully shielded, due to the random
fluctuation that changes the overlap between local moments and conduction
electrons. In fig. 4.4 (right panel) we reproduce the new phase diagram pre-
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Figure 4.4: [left] Onset of incommensurate ordering at low temperature in a
Ce(Ru0.24Fe0.76)2Ge2 single crystal. The diffraction peaks are present only along
[1 1 η] at the incommensurate positions [n n 2m±0.45] (indicated by the arrows at
the top), with n and m natural numbers. No difference was observed along [0 0 η].
The solid line is the calculated magnetic intensity based on the cross section for neu-
trons and the Ce f-electron form factor [111], while the dotted line is calculated for
the Fe d-electrons [112]. [right] (a) Suggested phase diagram for CeRu2Ge2 doped
with Fe: the area between the regions where the moments order (gray) and where
they are fully shielded (striped) is a region where some moments survive down to
0 K [37]. This phase diagram differs from the spin density wave [6] (b) and the local
moment [22] (c) scenario. Both pictures are taken from ref. [37] and adapted.

sented in ref. [37] in order to explain this scenario: the area between the regions
where the moments order and where they are fully shielded is a region where
some moments survive down to 0 K [37]. This differs from the spin density
wave [6] and the local moment [22] scenario diagrams.

4.2 Thermal properties of Ce(Ru0.24Fe0.76)2Ge2

As part of a more detailed study of the QCP in Ce(Ru0.24Fe0.76)2Ge2, mea-
surements of the thermal properties and the Grüneisen ratio have been car-
ried out. Thermal expansion and specific heat may shed light on the presence
and amplitude of different electronic contributions. The Grüneisen ratio is
predicted to diverge, under certain conditions, at every QCP [23] and it is
therefore a powerful tool to detect quantum criticality and its features. Pre-
dictions are available for temperature variation of the Grüneisen parameter
near an itinerant QCP [23], but not specifically for a local QCP [59]. From
the response of the Grüneisen ratio at the QCP one could in principle tell
whether quantum criticality in Ce(Ru0.24Fe0.76)2Ge2 has an itinerant nature.
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4.2.1 Specific heat

Unfortunately, the single crystalline sample used for the INS experiment
(labelled #1) was not available and, therefore, a new single crystalline sample
was grown with nominal concentration of Fe xFe=0.76 at the WZI by dr. Y.K.
Huang. A part of this crystal was shaped into a cube for thermal properties
measurements (sample labelled #2) with dimensions 5×5×5 mm3. In fig. 4.5
we show the specific heat of sample #2 (mass 0.75 g) measured at the WZI
and compare the data with the specific heat of sample #1 measured in Ann
Arbor [112]. Clearly, the specific heat of sample #2 shows a maximum in c/T
versus T at 1.2 K. No sign of such an anomaly is observed for sample #1. The
two data sets start to deviate from each other at T ∼ 6 K, but for T < 1 K
the data sets level off to the same value of c/T indicating γ=0.8 J/mol K2.
The high mass enhancement, indicated by the high γ value present in both
samples, indicates the proximity to a quantum critical point.
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Figure 4.5: Specific heat divided by temperature as a function of the logarithm of
temperature for Ce(Ru0.24Fe0.76)2Ge2 sample #2 (filled symbols) and #1 [112] (open
circles).

In fig. 4.6 we show the f-electron specific heat of Ce(Ru0.24Fe0.76)2Ge2 sam-
ple #2 after subtracting the phononic contribution. The latter was esti-
mated by measuring the specific heat of the non f-electron material LaFe2Ge2

[112, 113]. The specific heat of LaFe2Ge2 for T < 150 K can be described by
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a Debye function with ΘD=290 K. With this value we calculate a coefficient
β of the low temperature T 3 phonon term β = 3.97× 10−4 J/mol K4 by using
the relation (see sec. 2.1):

β = 5× 12π4R

5Θ3
D

(4.1)

where R = NkB is the gas constant. The coefficient γLa of the linear electronic
term is estimated as γ=0.043 J/mol K2 (see dashed line in fig. 4.6). This value
is of the same order of magnitude as the value reported in ref. [114]. The f-
electron contribution of Ce(Ru0.24Fe0.76)2Ge2 plotted in fig. 4.6 is derived as:

cel = c− clat

where clat = cLa − γLaT is the estimate for the phonon contribution.
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Figure 4.6: Electronic specific heat of Ce(Ru0.24Fe0.76)2Ge2 sample #2 divided by
the temperature (filled symbols) as a function of temperature in a log-log plot,
obtained by subtracting the data of LaFe2Ge2 (thin solid line) from the raw data
(solid line). The dashed line indicates the electronic contribution in LaFe2Ge2 with
γLa=0.043 J/mol K2.

The data in figs. 4.5 and 4.6 show a large electronic contribution for
T < 10 K. Considering, as discussed in sec. 6.1, that the second CEF doublet
lies at an elevated temperature (∆CEF=500 K), the anomalous contribution is
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a clear sign of the heavy fermion behaviour in samples with a Fe concentration
near 76 at.%.
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Figure 4.7: Electronic specific heat (filled symbols, left vertical scale) plotted together
with χac(T ) (open circles, right vertical scale) to a logarithmic temperature scale. A
weak maximum in both data sets is present for TN ∼1.2 K.

To investigate the nature of the low temperature anomaly in the specific heat
of sample #2, the electronic contribution cel is compared with ac-susceptibility
data (fig. 4.7). The ac-susceptibility was measured on a bar shaped single
crystalline sample of Ce(Ru0.24Fe0.76)2Ge2, taken from the same large single
crystalline piece as sample #2 was taken. The data are measured for a driving
field Hac along the c axis in the temperature range 0.24 K < T < 5.5 K.
Both cel/T and χac have a maximum at T=1.2 K, which tells us that the
specific heat anomaly has a magnetic origin. Inspecting the phase diagram
reported in ref. [94], we conclude that the AFM order is still present in the
sample, and that the actual Fe-concentration of sample #2 is slightly lower
than xnom=0.76. From the phase diagram of Ce(Ru,Fe)2Ge2 and TN=1.2 K we
estimate x ' 0.75. Nevertheless, in the following we will refer to this sample
by its nominal concentration: Ce(Ru0.24Fe0.76)2Ge2 (sample #2).

4.2.2 Thermal expansion

The coefficient of linear thermal expansion was measured in the glass-dewar
system along the three crystallographic axes and afterwards in the Heliox
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system along the a and c axes. The data were taken on the same sample #2
as used in the specific heat experiments. The sample length amounted to
∼5 mm along all axes. Data have been taken in the range 0.25-150 K in two
different experimental runs. The results for the coefficient of linear thermal
expansion along the three crystallographic axes, αa, αb and αc, are shown in
fig. 4.8. In this figure we have also plotted the averaged value β/3.
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Figure 4.8: Coefficient of linear thermal expansion of Ce(Ru,Fe)2Ge2 with nominal
concentration xcr=0.76 (sample #2). The blue curve gives the volumetric thermal
expansion coefficient divided by three, β/3. The horizontal line represents α = 0.
Inset: blow-up of the low temperature part of the data. The drop in αi for T < 2 K
is due to the magnetic order.

The thermal expansion shows a clear anisotropy αc > αa,b. The anisotropy
can be attributed to the large splitting of the CEF ground state. A similar
anisotropy was reported for CeRu2Si2 [115] (∆CEF= 220 K [116]). Below 2 K
α drops for all three axes, which we attribute to the magnetic transition. For
symmetry reasons αa should be equal to αb. Nevertheless small differences
are found below 25 K and above 70 K. The origin of the differences is unclear,
but is probably related to strain effects when the c axis parameter changes
rapidly.

The volumetric thermal expansion coefficient β = αa + αb + αc is plotted
in fig. 4.9. At low temperatures (T < 2 K) αb was not measured and we used
the relation β = 2αa + αc. For 50 K < T < 150 K the data resemble a Debye
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function like in the case of the specific heat. For T < 50 K the contribution
of the 4f electrons is dominant, i.e. a large heavy-fermion contribution with
a maximum near T = 6 K. For T < 2 K, β drops faster because of the AFM
transition and it becomes negative below T=1.1 K. For T → 0 β approaches
zero as expected.
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Figure 4.9: Calculated electronic contribution to the thermal expansion of
Ce(Ru,Fe)2Ge2. The black dots give the measured data for Ce(Ru0.24Fe0.76)2Ge2

sample #2. The dashed line is the LaFe2Ge2 data calculated from the specific heat
data by means of the Grüneisen relation (Γlat=2, see text), as an estimation for βlat.
The dotted line is a Debye function adapted to the LaFe2Ge2 data, with ΘD=290 K.
The empty symbols give the electronic thermal expansion coefficient, obtained after
subtracting the LaFe2Ge2 data from the raw data. The solid horizontal line represents
β=0.

An estimate for the phonon contribution to the thermal expansion of
Ce(Ru,Fe)2Ge2 is derived from the specific heat data of LaFe2Ge2 by taking
into account a phononic Grüneisen parameter Γlat=2 [49]:

βlat =
κT

Vm
Γlatclat. (4.2)

Here the molar volume Vm=5.53× 10−5 m3/mol is calculated taking into
account a linear variation of the lattice constants when going from CeRu2Ge2

to CeFe2Ge2. The assumption is corroborated by the low temperature data
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in ref. [95]. The lattice constants of the pure compounds are taken from
ref. [99] for CeRu2Ge2 and from ref. [117] for CeFe2Ge2. The compressibility
κT=0.74 × 10−11 Pa−1 is calculated from the bulk modulus B0=135 GPa
[104]. In fig. 4.9 we show βlat derived as discussed and compare it with
the Debye function with ΘD=290 K. We also show the 4f-electron contri-
bution to the volume thermal expansion coefficient βel. Notice that β of the
Ce(Ru0.24Fe0.76)2Ge2 sample #2 always exceeds the estimated phonon contri-
bution. For T < 50 K the large heavy fermion contribution is dominant. For
T > 80 K another electronic contribution is detected. A similar but smaller
electronic contribution (∼6%) is present in the specific heat data of sample #1,
extrapolated up to T=150 K. This is most likely the low temperature shoul-
der of the CEF anomaly, present for T > 80 K in the pure compound [71]
(fig. 4.2). We conclude we may neglect the contribution of phonons below
15 K, our temperature region of interest.

4.2.3 Grüneisen ratio
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Figure 4.10: Grüneisen ratio of Ce(Ru0.24Fe0.76)2Ge2 sample #2. The dashed line
indicates the theoretical phononic Grüneisen ratio Γlat=2.

From the thermal expansion and specific heat data we calculate the
Grüneisen ratio Γ (fig. 4.10), using the same values listed above for the mo-
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lar volume and the compressibility. The Grüneisen ratio at high temperature
(T ∼ 50 K) has a constant value of Γ ∼2 as expected for phonons [49]. This
supports the procedure used above to derive the electron contribution in the
thermal expansion data. Upon lowering the temperature, Γ increases due to
the HF contribution until it reaches a high value of Γmax=100 at 4 K. For
T < 4 K it drops to below 0 because of the AFM transition. At low temper-
ature the Grüneisen ratio seems to level off at Γ ∼-10 (fig. 4.11), where the
negative value is expected when the AFM is the dominant energy scale.
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Figure 4.11: Thermal expansion, specific heat and Grüneisen ratio as a function of
temperature for Ce(Ru0.24Fe0.76)2Ge2 sample #2. The filled dots are the measured
data, the dashed lines are the expected critical behaviour for an AFM QCP in a SDW
scenario (see text).

The volume thermal expansion, the specific heat and the Grüneisen param-
eter are plotted in fig 4.11. In the same figure a qualitative representation of
the predicted critical behaviour for an AFM QCP in a SDW scenario [23] is
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shown:

αcr ∝ T 1/2

ccr ∝ T 3/2

Γcr ∝ T−1.

(4.3)

The theoretical curves are ‘normalized’ to the measured data in the tem-
perature range 4 K < T < 6 K. Clearly the data do not follow eq. 4.3, as
expected from the previous discussion: AFM order prevents the predicted crit-
ical low temperature behaviour. At the same time this hampers us to discern
between the SDW or local quantum critical fluctuations scenarios, as discussed
in chapter 2.

4.3 Tuning with magnetic field

The presence of an antiferromagnetic transition prevents the study of the
Grüneisen ratio at the quantum critical point, but its high value at low tem-
perature suggests that the compound is nevertheless close to a QCP. This
provided the motivation to investigate whether we can suppress the AFM
transition by applying a magnetic field B [4], thereby introducing a second
control parameter.

Therefore we carried out magnetoresistance (MR) and magnetostriction
(MS) experiments with the magnetic field applied along the direction of the
magnetic moment, i.e. the c axis.

The magnetoresistance data are taken on a resistivity bar (dimensions
∼1×1×4 mm3) of Ce(Ru0.24Fe0.76)2Ge2 prepared along the c axis (same batch
as sample #2). The residual resistance ratio RRR=2.1. The magnetic field
was always applied along the c axis in the longitudinal configuration B ‖ I ‖ c.
The results are shown in fig. 4.12 for T = 0.3 K and T = 6 K. At T=0.3 K,
the data show a pronounced change for B < 1 T. Taking the inflection point
in the R(B) curve we determine a characteristic field Bc=0.7±0.1 T. The MR
data at T=6 K do not show such a change. We therefore identify Bc with the
critical field for the suppression of AFM order: the sample is driven from an
AFM ordered state at B=0 (corroborated by the data in 4.2) to a polarized
phase for B > Bc. The values in the ordered AFM state are higher than the
ones in the polarized state, as it will be reported also for the resistivity in zero
field ρ(T ), showing that electron scattering is less effective in the latter. A
similar effect is observed for the MR in the pure compound CeRu2Ge2 for field
B < 8 T and for temperature close to the transition temperature [118]. The
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Figure 4.12: Magnetoresistance of Ce(Ru,Fe)2Ge2 with x ∼ 0.76, for B‖ I ‖ c at
T=0.3 K (black curve) and T=6 K (gray curve). The dashed line at Bc=0.63±0.01 T
indicates the inflection point.
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Figure 4.13: [left] Low temperature linear magnetostriction λ of Ce(Ru0.24Fe0.76)2Ge2

sample #2 for B ‖ c and ∆ L ‖ a or ∆ L ‖ c. Inset: Linear magnetostriction
λ of Ce(Ru0.24Fe0.76)2Ge2 sample #2. [right] Coefficient of linear magnetostriction
τ = dλ/dB of Ce(Ru0.24Fe0.76)2Ge2 sample #2 as a function of the magnetic field for
B ‖ c, with ∆ L ‖ a (gray) and ∆ L ‖ c (black). The characteristic field calculated
as the inflection point Bc=0.75±0.01 T is marked by the vertical dashed line.
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low temperature data are measured in up and down sweeps and no hysteresis
is detected.

The magnetostriction data are taken on the same sample as used in the
thermal expansion and specific heat experiments (section 4.2). The magnetic
field was always applied along the c axis (B ‖ c) either in transverse configu-
ration B ⊥ ∆L ‖ a or in longitudinal configuration B ‖ ∆L ‖ c. In fig. 4.13
the magnetostriction coefficient λ (left panel) and its derivative τ = dλ/dB
(right panel) from Ce(Ru0.24Fe0.76)2Ge2 sample #2 at T=0.3 K are reported.
The MS data show that the effect along the c axis is more pronounced than
along the a axis. The characteristic field, determined as the inflection point, is
Bc=0.8±0.1 T in agreement with the previous value. Since magnetostriction
is a bulk property, in the following we take the critical field as Bc ∼ 0.8 T. This
value can slightly change with different samples and different determination
methods, but the presence of the transition is the most relevant observation.

4.4 Transport properties of Ce(Ru0.24Fe0.76)2Ge2 in field

The resistivity is subsequently measured at a constant applied magnetic
field. The temperature variation of the resistivity was measured in the Heliox
at several constant fields (B ≤ 1.5 T), by sweeping the temperature from 6 K
to base temperature. The sample used in this section was also used in the
previous magnetoresistance experiments.

The results of sample #2 for I ‖ c are shown in fig. 4.14. For T ≥ 3 K the
ρ(T ) curves are quite similar. In zero field an up-turn is present below 2 K:
this is a clear sign of the AFM transition and it is smoothly suppressed by
applying a magnetic field. In the AFM phase the resistivity is higher than in
the PM phase, which is possibly due to the spin density wave coupled to a
broad magnetic transition.

In fig. 4.15 the parameters of a fit of the resistivity data to ρ = ρ0 + AT n

are presented. The resistivity data are fitted in the temperature range outside
the FM state. For B ≥ 0.75 T temperatures in the range 0.24 K < T < 3.5 K
have been considered, while for B < 0.75 T the lowest temperature used is the
temperature at which the up-turn in resistivity takes place. The fit parameters
change as a function of the field, with a maximum or a minimum in the vicinity
Bc. For the residual resistivity ρ0 this change is only a few percent but for
the temperature coefficient A and the temperature exponent n the relative
change is much more pronounced. The temperature exponent n has a dip for
B ∼ Bc: from a value close to 2 (typical for a FL) at small magnetic field,
it reaches n ∼ 1.3 for B=0.75 T. The value of n is already smaller than the
value n=3/2 for an AFM QCP within the SDW theory. For B ≥ 1 T, the
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Figure 4.14: Resistivity versus temperature of Ce(Ru,Fe)2Ge2 with x ∼ 0.76, for I‖c
and B‖c in magnetic field up to 1.5 T.

temperature exponent slowly starts to increase in order to slowly recover the
FL exponent value n=2. Such a slow recovery of the FL behaviour is observed
in the thermal properties (sec. 4.5), in pressure experiments [94, 107] and in
Si-doping experiments [95] and it is probably due to a broad transition.

4.5 Thermal properties of Ce(Ru0.24Fe0.76)2Ge2 in field

In this section we report thermal expansion and specific heat measurements
on Ce(Ru0.24Fe0.76)2Ge2 sample #2 in a magnetic field B ‖ c. Subsequently
we report the Grüneisen ratio. The sample used in this section is the same as
used for measuring the thermal properties in zero field (sec. 4.2).

4.5.1 Thermal expansion

The thermal expansion was measured on Ce(Ru0.24Fe0.76)2Ge2 sample #2 in
a magnetic field. The thermal expansion for ∆L ‖ a was measured in magnetic
fields B ≤ 1 T with B ‖ c. For ∆L ‖ a data were taken for a field B=0.75 T
with B ‖ a as well, but no change from the ZF data is observed . The thermal
expansion for ∆L ‖ c was measured in magnetic fields B ≤ 6 T and B ‖ c.
The results are reported in figs. 4.16 and 4.17.
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Figure 4.15: Resistivity fit parameters for Ce(Ru,Fe)2Ge2 with x ∼ 0.76, I ‖ B ‖ c.
The data have been fitted to ρ = ρ0 +ATn. The arrows indicate Bc ∼ 0.8 T.

The results in zero field have already been discussed in sec. 4.2. Upon
applying a magnetic field B ‖ c, the a and the c axes have a similar response:
at high temperature there is no change for small magnetic fields, while at
low temperatures the AFM transition is suppressed already for B > 0.5 T.
By fitting the data as α = aTn, a linear behaviour is detected for α → 0 at
B ∼ 0.8 T (see dashed lines in figs. 4.16 and 4.17). For B ≥ 1 T the coefficient
a becomes smaller and α approaches 0 with n ≥ 1. For B ≥ 1.5 T, αc starts to
deviate from the zero field behaviour both at low and high temperature. Upon
further increase of the magnetic field, the linear thermal expansion coefficient
αc differs much from the data at lower field and is even negative at T < 4 K
for B=6 T.

The behaviour of the linear thermal expansion coefficient for B > 0 is better
pictured in fig. 4.18 by the parameters of a power law data fit used to describe
the approach to criticality. The thermal expansion data are fitted to α=aTn,
forcing the function to α=0 when T=0, as predicted by thermodynamics. The
fits are made in the temperature range T < Tinfl, where Tinfl is the temperature
where α has an inflection point. In all the cases Tinfl=2-3 K apart for αc at
B=0.6 T where the maximum measured temperature was T=1.6 K. The fit
parameters for both crystallographic axes have a similar trend. The temper-
ature power law coefficient n sharply decreases upon increasing the magnetic
field, until n ∼1 at B ∼ Bc for the a and c axes. Here we observe a small
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Figure 4.16: Coefficient of linear thermal expansion along the a axis, αa, of
Ce(Ru0.24Fe0.76)2Ge2 sample #2 in zero field (�) and in fields applied along the
c axis. Fields are 0.5 (N), 0.75 (O) , 0.85 (�), and 1 (J) T. For B=0.75 T, data on
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Figure 4.17: Coefficient of linear thermal expansion along the c axis, αc, of
Ce(Ru0.24Fe0.76)2Ge2 sample #2 in zero field (�) and in applied fields. Fields are
0.5 (◦), 0.6 (•), 0.75 (N) , 0.85 (O), 1 (�), 1.5 (J), 2 (?), 4 (�), and 6 (•) T. The
dashed line a guide to the eye for the linear behaviour of the low temperature data
for B ∼ Bc.
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Figure 4.18: Fit parameters a and n for the linear thermal expansion coeffi-
cient αa [left] and αc [right] as a function of the applied magnetic field B of
Ce(Ru0.24Fe0.76)2Ge2 sample #2. The dashed line is a guide to the eye, while the
dotted vertical line indicates the characteristic field Bc ∼ 0.8 T. The horizontal dotted
line gives the predicted temperature exponent of a AFM SDW QCP, n=1/2.

plateau (∆B ∼ 0.3 T). For the a axis no further data are available. For the
c axis instead we are able to fit the data until B=2 T and we record a slow
recovery of the zero field coefficient. For B > 2 T the data no longer can be
fitted with a power law function. The vertical dashed line that marks the char-
acteristic field Bc in fig. 4.18 is located in the small plateau where n has the
smallest value of ∼1. The lowest value of the temperature exponent is higher
than the predicted exponent of a AFM SDW QCP n=1/2 (horizontal dashed
line). Moreover the fast drop and slow recovery of n resemble the trend of the
temperature exponent of the resistivity in fig. 4.15. As discussed in sec. 4.4,
the slow recovery of the FL behaviour for B > Bc was already observed. The
temperature coefficient a has a behaviour which is similar, but mirrored with
respect to n, with a maximum instead of a minimum at B ∼ Bc.

The volume thermal expansion coefficient β is calculated for the data in
field as β = 2αa + αc as described in sec. 4.2. All the data measured in
the same magnetic fields for the a and the c axis (B=0, 0.5, 0.8, 1 T) are
reported and the results are shown in fig. 4.19. At high temperature (∼6 K)
β(T ) decreases proportionally to the field and a 20% difference between the
zero field and the B=1 T data is reported. The AFM transition is depressed
already considerably in a small field B=0.5 T. The highest value of β at low
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Figure 4.19: Coefficient of volume thermal expansion β of Ce(Ru0.24Fe0.76)2Ge2 sam-
ple #2 in zero field (black) and in applied fields of 0.5 T (dashed line), 0.8 T (dotted
line) and 1 T (dashed-dotted line). The field is applied along the c axis. Inset: fit
parameters a and n for the volume thermal expansion coefficient β as a function of
the applied magnetic field B. The dotted vertical line indicates the characteristic field
Bc while the horizontal dashed line is the predicted temperature exponent of a AFM
SDW QCP, n=1/2.

temperature is observed for B=0.8 T. A similar analysis as presented for α
is reported in the inset of fig. 4.19. The data are fitted to β = aTn and the
trend resembles the one reported in fig. 4.18, with a plateau for B ∼ Bc.

4.5.2 Specific heat

The specific heat of Ce(Ru0.24Fe0.76)2Ge2 sample #2 was measured in fields
applied along the c axis (B‖c) up to 4 T on the same sample as used for the
thermal expansion measurements. The results are reported in fig. 4.20. The
data show a similar trend as observed in the thermal expansion data but a
weaker field dependence. At high temperature the field dependence is weak.
The AFM order, indicated by the maximum in c/T versus T near 1.2 K, is
suppressed in a small magnetic field (B ∼ 0.8 T). For B ≥ 1.5 T the specific
heat data proceeds to decrease as the sample is tuned away from the critical
behaviour. The c/T value at 0.5 K as a function of the magnetic field is
reported in the inset of fig. 4.20. For B=0, T=0.8 K is the lowest temperature
and c/T at 0.5 K is calculated with a linear fit of the data in the temperature
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Figure 4.20: Specific heat divided by temperature as a function of temperature for
Ce(Ru0.24Fe0.76)2Ge2 sample #2, in zero field (�) and in field applied along the c
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C. P. Klaasse and M. Nale.
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Figure 4.21: Magnetic entropy of Ce(Ru0.24Fe0.76)2Ge2 sample #2 in units of Rln2
in the low temperature region for zero field (black line) and for fields applied along
the c axis. The applied fields are B=0.6 (gray), 0.8 (blue), 1 (cyan), 1.5 (green), and
4 T (magenta). Inset: The magnetic entropy of Ce(Ru0.24Fe0.76)2Ge2 sample #2, up
to 45 K. The dotted line represents the entropy of the ground state doublet.
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range T=0.8-1 K, giving a value 0.83 J/mol K2.The value of c/T here obtained
is compared with the γ values reported in literature. To avoid confusion we
refer to the calculated c/T value at 0.5 K as the γ value.

The γ value at the magnetically tuned QCP is just ∼ 3% higher than
the γ value at the doping tuned QCP reported in ref. [112, 113] for
Ce(Ru0.24Fe0.76)2Ge2 sample #1. The γ value for the pressure induced QCP
is reported to be around 10 times lower than both the other values. In
ref. [107] the Sommerfeld value of CeRu2Ge2 at p=67.5 kbar is indeed given
as γ=0.080 J/mol K2. This value is obtained from the Kadowaki-Woods ratio
[119] A/γ2=3.3 µΩ cm mol2 K2/J2 of CeRu2Si2. The γ value for CeRu2Ge2

under pressure is therefore particulary small and probably underestimated.
This we attribute to the non-validity of the Kadowaki-Woods ratio next to a
QCP [17, 120]. From calorimetry experiments under pressure (arbitrary units)
[121] we can roughly estimate γ ∼0.13 J/mol K2, which is still much smaller
that the other values at the QCP.

The magnetic entropy Smag is calculated by integrating the electronic spe-
cific heat cel divided by temperature versus the temperature. The lattice
contribution in zero field is subtracted to calculate the electronic specific heat
of the data in field. The data are then plotted together with S = 0 at T=0 for
all data sets. The result is shown in fig. 4.21. For B=0, the magnetic entropy
for the ground state doublet Rln2 is recovered already at T=20 K, as for the
pure compound. This tells us that the HF contribution is still present in the
system upon doping. When approaching the QCP, the specific heat divided by
the temperature is predicted to be enhanced for T → 0 with a corresponding
shift of the entropy to low temperatures. This is not seen in our entropy data
because for B < 1 T the field effect is very small. For higher applied magnetic
fields, Smag decreases with field. This is clearly visible at B=4 T. This is the
signature that the entropy is shifted to higher temperatures and the system is
tuned away from the QCP.

4.5.3 Grüneisen ratio

The Grüneisen ratio was determined for the field applied along the c axis
at 0, 0.6, 0.8, 1 T. The results are reported in fig. 4.22. At high temperature
(∼5 K) the Γ value decreases with increasing field with a change of∼20% in the
maximum field of 1 T. At low temperature a large field effect is observed. The
Grüneisen ratio increases from -10 in zero field data (AFM) to a maximum
value of 50 in 0.8 T. As discussed in sec. 4.2, the large Γ value shows the
presence of the heavy fermion contribution, which apparently becomes broader
in field though maintaining roughly the same characteristic temperature. A
divergence of the Grüneisen ratio is not observed even at B = Bc although
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Figure 4.22: Grüneisen ratio of Ce(Ru0.24Fe0.76)2Ge2 sample #2 in zero field (�) and
in field applied along the c axis. Field values are 0.6 (•), 0.8 (O), and 1 T (�).

at this characteristic magnetic field Γ shows the maximum value Γ=50 at the
lowest temperature measured (T = 0.5 K).

4.5.4 Discussion

In fig. 4.23 we summarize the results obtained on the thermal properties in
field. We consider only the electronic contribution to the thermal expansion,
the specific heat and the Grüneisen ratio, calculated after subtracting the
estimated phononic contribution in zero field (sec. 4.2). The volume thermal
expansion shows a quite strong field dependence at low temperature: β/T for
T < 2 K at B=0.8 T is more than 3 times bigger than the absolute value in
zero field. Already for small field (B=0.6 T) the volume thermal expansion
becomes no longer negative and the AFM transition is not present anymore
in the data. For B = Bc, βel/T is quite constant. For B > Bc, the thermal
expansion coefficient β is smaller than at B = Bc. The electronic specific heat
data show a less pronounced field dependence. For B=0.6 T a transition is still
measured (the lowest temperature is lower than the thermal expansion one)
and the magnetic order is suppressed for B ≤ Bc. The Grüneisen ratio follows
the thermal expansion. The Grüneisen ratio has the highest low temperature
value Γel = 50 at the critical field and for B > Bc it decreases. Although the
low temperature value is elevated, and at B = Bc it is the highest in the data
sets, no divergence is observed.
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Figure 4.23: [top] Electronic volume thermal expansion divided by temperature, [mid-
dle] electronic specific heat divided by temperature, and [bottom] electronic Grüneisen
ratio of Ce(Ru0.24Fe0.76)2Ge2 sample #2, in zero field (black) and in applied fields
of 0.5 T (dashed line), 0.8 T (dotted line) and 1 T (dashed-dotted line). For all the
curves the field is applied along the c axis, B‖c.
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Figure 4.24: Electronic specific heat (filled symbols) and coefficient of elec-
tronic volume thermal expansion (empty dots), both divided by temperature, of
Ce(Ru0.24Fe0.76)2Ge2 sample #2 at Bc=0.8 T. The lines represent the fits made
according to the SDW prediction for an AFM QCP as c/T = γ − bT 1/2 and
β/T = a + cT−1/2. Inset: Electronic Grüneisen ratio of Ce(Ru0.24Fe0.76)2Ge2 sam-
ple #2 in a log-log plot. The line represents the fit to Γel = AT−x with x = −0.3.

A comparison of the data of the specific heat cel/T and the thermal expan-
sion βel/T at B=0.8 T with the critical behaviour expected for an AFM QCP
in SDW is made in fig. 4.24. The solid lines in the plot show the theoretical
prediction for a pressure induced AFM SDW QCP in 3D. The comparison
shows that a single component fit is not possible in the case of a field induced
AFM QCP in Ce(Ru,Fe)2Ge2 with x ∼ 0.76. Other additional terms could
account for the contribution of the remaining local moment at low tempera-
ture, as discussed in the introduction, or for the influence of a magnetic field.
The electronic Grüneisen ratio is shown in the inset in a log-log plot. A fit is
made to identify the characteristic exponent x in Γ ∼ T−x. Here x is expected
to be positive but we find x = −0.3, at odds with the prediction.

The discrepancy with the theory is not completely surprising. The sys-
tem studied here does not comply with the theory proposed in ref. [23] (see
chap. 2). The presence of non-critical contributions that cannot be discerned
from the critical one or, even the presence of different competing critical con-
tributions, could prevent the Grüneisen ratio from diverging. As discussed
before in sec. 6.1, it is not clear which magnetic fluctuations drive the system
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to criticality. Moreover this system lies above the upper critical dimension 4
for d + z, since d=3 and z=2. At the upper critical dimension, logarithmic
corrections arise. Above the upper critical dimension, the scaling argument
can be spoiled by the presence of so called ‘dangerously irrelevant operators’
[23]. This is taken into account in the calculation of the diverging Grüneisen
ratio in the SDW scenario. If in Ce(Ru0.24Fe0.76)2Ge2 a different mechanism
for quantum criticality is at work, the Grüneisen ratio above the critical di-
mension could be logarithmically damped and will not diverge.

In addition we need to notice that in the discussion presented in sec. 4.5
we considered the thermal Grüneisen ratio ΓT, while in ref. [23] the magnetic
Grüneisen ratio Γmag = −(dM/dT )H/ccr is predicted to diverge when the
control parameter is the magnetic field. This has been shown for instance for
the field induced AFM QCP in YbRh2Si2 [122]. Generally, when the electronic
system is described by a single energy scale Γmag is approximately equal to ΓT

[123]. This is the case for instance in CeRu2Si2 [124] or next to an AFM QCP
in YbRh2Si2 [125]. Nevertheless it is possible that in our case two energy scales
are present [37] and that the thermal and magnetic Grüneisen ratios do not
couple. This could be clarified by further measurements of the magnetocaloric
effect (dM/dT )H.

4.6 Summary

The thermal expansion and specific heat of Ce(Ru0.24Fe0.76)2Ge2 in zero ap-
plied magnetic field were measured and the Grüneisen ratio was subsequently
derived. The asymptotic low temperature behaviour differed from that pre-
dicted for a SDW AFM QCP, and, as was clear from the susceptibility data,
AFM order is present in the sample. From the Néel temperature TN ∼1.2 K,
we concluded that the sample has an Fe content x that is lower than the nom-
inal critical concentration. From the phase diagram reported in ref. [94] we
estimated x ∼ 0.75 at.% of Fe. This offered the possibility of suppressing the
AFM order by magnetic field tuning and to study a field induced AFM QCP
in Ce(Ru,Fe)2Ge2.

Magnetostriction (MS) and magnetoresistance (MR) were used to determine
the characteristic field at which the AFM transition is suppressed and the
system turns into a spin-polarized phase. For both MS and MR the field is
applied along the c axis (the direction of the magnetic moments). The MR
data reveal an inflection point at BMR

c = 0.7 ± 0.1 T for B‖I‖c. From the
MS data for B‖∆L‖c or B‖c and ∆L‖a we extract BMS

c = 0.8 ± 0.1 T. The
MS response along the a axis is less pronounced than the one along the c axis.
Since the MS is a bulk property, we take the critical field as Bc ∼ 0.8 T.
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Next we investigated the Ce(Ru0.24Fe0.76)2Ge2 sample by resistivity, ther-
mal expansion and specific heat measurements in field (B‖c). The behaviour
of the transport and thermal properties was analysed by means of the param-
eters of power law fits.

The resistivity data (B < 1.5 T) with I‖c were fitted by ρ(T ) = ρ0 +ATn.
The fit parameters have their maximum or minimum at B ∼ Bc. For B >
Bc we report a slow recovery of the FL behaviour, as observed in pressure
and doping experiments around the QCP. The temperature exponent n at
B ∼ Bc is ∼1.3, which is lower than the value of the exponent predicted for a
SDW AFM QCP, n=3/2. This discrepancy is possibly due to crystallographic
disorder.

Thermal expansion and specific heat in field (B < 6 T for the former and
B < 4 T for the latter) have been measured and the Grüneisen ratio was
detemined in fields B = 0, 0.6, 0.8, and 1 T. The main result is presented in
fig. 4.23. In both thermal expansion and specific heat we observed a suppres-
sion of TN in a small magnetic field, although the specific heat has a weaker
field dependence. The volume thermal expansion coefficient was fitted by a
power law function β = aTn with a minimum n = 1 for B ∼ Bc. This value
is higher than the exponent predicted for an AFM SDW QCP n = 1/2. The
specific heat divided by the temperature c/T at T = 0.5 K was reported as rep-
resentative for γ. At B ∼ Bc we reported its highest value γ = 0.83 J/mol K2.
The magnetic entropy Smag calculated from the specific heat data had, as well,
a weak field dependence. Nevertheless the data at B = 4 T showed that the
entropy is shifted to higher temperatures and the system is tuned away from
the QCP. The Grüneisen ratio has a strong field dependence. Although it
reaches its highest low temperature (T = 0.5 K) value Γmag=50 at B ∼ Bc,
no divergence was observed, in disagreement with theory.

The behaviour at the critical field Bc = 0.8 T was analysed. The βel/T
and cel/T data were compared with the prediction for an AFM SDW QCP,
β/T = a+ cT−1/2 and c/T = γ − bT 1/2. Clear differences are observed. The
Grüneisen ratio at Bc presented a temperature exponent x=-0.3, while a posi-
tive exponent is expected at the QCP. The discrepancy with the theory is not
completely surprising. The system is reported to have a peculiar behaviour
at the QCP tuned by doping. At the QCP both local and long-range fluc-
tuations are present, although only the latter are believed to be critical. In
the theory proposed in ref. [23] the presence of non-critical contributions that
cannot be discerned from the critical one, or even the presence of different
competing critical contributions, could prevent the Grüneisen ratio from di-
verging. Moreover this system is above the upper critical dimension d+z = 4.
As a last fact, we mention that in the presence of a magnetic field as control
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parameter, the magnetic Grüneisen ratio Γmag is predicted to diverge. If two
energy scales are present, the thermal and magnetic Grüneisen ratios could
not couple and only Γmag is predicted to diverge.



63

5 Itinerant ferromagnetic quantum
critical point in U(Rh,Ru)Ge

il laboratorio rivisitato è sorgente di gioia
ed emana un fascino intenso

P. Levi

A few years after the discovery of URhGe, the first ambient pressure super-
conducting ferromagnet (SCFM) [26], it was demonstrated that URhGe could
be tuned to a ferromagnetic quantum critical point (FM QCP) by doping with
38 at.% Ru [38, 126]. Several examples of antiferromagnetic (AFM) QCPs
have already been discussed extensively in the literature (see refs. [4, 10, 11]
for reviews). On the other hand the FM case has not been deeply studied, with
Ce(Pd,Rh) [127, 128, 129] and Zr1−xNbxZn2 [130] as the only test-cases of a
FM QCP. Here we investigate the properties of the FM QCP in U(Rh,Ru)Ge
by means of the Grüneisen ratio. In this chapter we report the thermal ex-
pansion and the Grüneisen ratio of selected polycrystalline URh1-xRuxGe sam-
ples and of single crystalline samples with nominal concentrations x=0.38 and
x=0.39.

5.1 Introduction

In 2001 the second SCFM URhGe was discovered [26]. The first SCFM,
UGe2, becomes superconducting under high pressures (∼1 GPa) near the crit-
ical pressure for the suppression of ferromagnetism [24]. However, in URhGe
FM and SC coexist at ambient pressure.

URhGe crystallizes in an orthorhombic structure, like UGe2, with zig-zag
chains of nearest-neighbour uranium atoms [131]. URhGe orders ferromag-
netically below TC=9.5 K with an ordered moment of µS=0.45 µB (T → 0)
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per formula unit, directed along the c axis. The analysis of the magnetization
(Arrott plots) shows URhGe is an itinerant ferromagnet [132], while neutron
scattering shows that the magnetization is almost entirely attributed to the
uranium 5f electrons [26].

Superconductivity is found for Tsc < 0.25 K as demonstrated by resistivity
and susceptibility data [26]. Evidence for bulk superconductivity is obtained
by specific heat data. A strong sensitivity of the superconducting transition
temperature to the quality of the samples provides evidence for unconventional
superconductivity: no sign of SC down to 80 mK is present in samples with
ρ0 ∼ 30 µΩcm [26]. An unexpected and striking feature of URhGe is re-
entrant superconductivity, which can be induced by applying a large magnetic
field (B ∼ 12 T) along the b axis [133].

These observations raise the question whether URhGe can be brought to a
FM QCP by applying mechanical or chemical pressure. In order to investigate
the possible link between superconductivity and enhanced magnetic fluctua-
tions, mechanical pressure is a clean way to drive a system to a QCP. Un-
fortunately this is not possible in URhGe. The Curie temperature increases
by applying hydrostatic pressure at a rate of 0.065 K/kbar [27]. The in-
crease of TC is in agreement with the estimate made by the Ehrenfest relation,
dTC/dp ∼ 0.12 K/kbar, which predicts a critical pressure pcr=-80 kbar for the
suppression of FM [134]. Consequently the applied pressure should be neg-
ative to tune the system to a FM QCP, which may be achieved by chemical
substitution.

The first doping study of URhGe was reported in ref. [135]. Since among the
isostructural UTX compounds, with T = transition metal and X = Ge or Si,
only URuGe and UCoGe were reported to have a paramagnetic (PM) ground
state [136, 137], Ru and Co are considered to be the best candidate dopants.
Small amounts of Co increase the Curie temperature, however the FM order in
URhGe can be depressed by replacing Rh by Ru and it completely vanishes at
38 at.% Ru [135]. URuGe has a smaller unit cell volume than URhGe, meaning
that Ru-doping plays the role of providing negative pressure. Nevertheless for
small Ru-content (< 10 at.% Ru) TC increases. This is attributed to the fact
that Ru and Rh are not isoelectronic: doping with Ru empties the electron
d-band which leads to an increase of the Curie temperature.

Further studies on the URh1-xRuxGe system by means of resistivity, mag-
netization and specific heat measurements on polycrystalline samples are re-
ported in ref. [38]. The main results are summarized in fig. 5.1. In the top
frame the Curie temperature as a function of the Ru concentration is shown.
The phase diagram shows TC is suppressed for xRu=0.38. The middle frame
reports the magnetization for B = 0.01 T and 1 T as a function of the Ru-
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Figure 5.1: (a) Curie temperature determined from specific heat, resistivity and mag-
netization. The critical Ru content xcr=0.38 is indicated by the vertical dashed line.
(b) Magnetization at T=2 K in B=0.01 T (filled dots) and in B=1 T (empty sym-
bols). In the inset, the Arrott plot for xcr=0.38 at 1.8 K ≤ T ≤ 6 K is shown. (c)
Specific heat divided by temperature c/T at 0.5 K (filled squares) and the resistivity
exponent n (empty squares). The horizontal dashed line indicates n=2. Figure taken
from ref. [38].

concentration measured at 2 K. Notice, for B=0.01 T the magnetization is
reduced due to demagnetization effects. Clearly the spontaneous magnetiza-
tion vanishes for x → 0.38 in a continuous way. This indicates that the FM
to PM transition is a second order phase transition. The bottom frame shows
the specific heat divided by the temperature c/T at 0.5 K (left vertical scale)
and the resistivity exponent n of the non-Fermi liquid term in the resistiv-
ity, ρ ∼ Tn (right vertical scale). The former has a maximum at the critical
concentration, while the latter attains a minimum value n=1.2 at xcr followed
by a slow recovery of the Fermi liquid (FL) value n=2 for x > xcr. These
observations support the hypothesis of a critical behaviour at xcr, although
the resistivity exponent is smaller than the value n=5/3 predicted in the case
of a clean FM [7]. This is not unexpected since disorder reduces n, like for
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instance reported in ref. [138]. Disorder might also explain why TC deviates
from the expected TC suppression near a QCP for an itinerant clean FM. For
d=3 and for a dynamical exponent z=3, TC ∼ (xcr − x)3/4 is expected, while
for U(Rh,Ru)Ge TC ∼ (xcr − x) is found over the wide range 0.20 < x < 0.35
[38].
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Figure 5.2: f-electron specific heat for polycrystalline samples of U(Rh,Ru)Ge plotted
as cm/T as a function of logT for 0 ≤ x ≤ 0.50. Figure taken from ref. [38].

The most compelling evidence for the presence of a QCP at xcr=0.38 in
U(Rh,Ru)Ge is provided by specific heat data taken on polycrystalline samples
(see fig. 5.2 [38]). The data show that TC, after a first increase, decreases
gradually while at the same time the transition broadens and weakens. For
x=0 and T < 5 K the f-electron specific heat can be described by an electronic
(γ) and a spin wave (δ) term, cm(T )=γT + δT 3/2 [46]. Upon Ru doping an
energy gap opens in the magnon spectrum. The specific heat of x=0.05 and
x=0.10 is described by cm(T )=γT + δT 3/2e−∆/kBT [46] where ∆ is the energy
gap in the magnon spectrum. At x = xcr the specific heat follows the predicted
logarithmic behaviour for a FM QCP in 3D, cm(T ) = −bT ln(T/T0), over one
and a half decade in temperature. The temperature T0 can be considered as
an upperbound for the critical behaviour. In the case of URh0.62Ru0.38Ge,
T0 = 41 K. This indicates that experiments down to 0.4 K (hundred times
smaller than T0) indeed probe the quantum critical regime. The reduced f-
electron entropy, about 50% of the local moment value Rln2 for T < 15 K,
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confirms the itinerant nature of the FM state [38].

5.2 U(Rh,Ru)Ge polycrystalline series

In order to follow the evolution of the electron and phonon contributions
in the U(Rh,Ru)Ge system, the Grüneisen ratio Γ ∝ β/c is studied. The
specific heat of the U(Rh,Ru)Ge series was already reported in ref. [38, 92],
and here we present thermal expansion data. Polycrystalline samples with
different Ru concentrations (0 ≤ x ≤ 0.60) were prepared with the arc melting
technique. All samples were annealed for 10 days at 900 ◦C. Their resistivity,
magnetization and specific heat were measured and extensively reported in
ref. [92]. The residual resistance ratio RRR of the polycrystalline samples
amounts to ∼2. A more detailed characterization of the samples is given in
ref. [92, 139]. Selected samples (xRu=0.10, 0.20, 0.38), used also for specific
heat, were shaped into a cube with plane parallel surfaces in order to fit in
the dilatometer.

5.2.1 Thermal expansion

Thermal expansion data were taken along the three orthogonal directions
of the cube-shaped polycrystalline samples, in order to eliminate possible
anisotropy effects due to crystallites with preferred orientations. The tem-
perature range for the polycrystalline samples with xRu=0.10 and 0.20 is
2 K < T < 150 K (glass dewar system) and for the polycrystalline sample
with xcr=0.38 1 K < T < 20 K.

The coefficients of linear thermal expansion measured on the polycrystalline
samples along the three orthogonal directions, αi, where i = x, y, z, are re-
ported in fig. 5.3. A strong anisotropy is present in all the polycrystalline
samples. For x = 0.20 (middle frame) the three curves have the same shape
but the step in αy at the FM transition, ∆αy, is almost 5 times bigger than
∆αx and ∆αz. For the other samples (x=0.10 and x=0.38) the anisotropy is
much more pronounced. In the sample with 38 at.% Ru, no FM transition
is detected and upon lowering the temperature αx and αz become negative
for T < 4 K, while αy remains positive. For x=0.10 the anisotropy is more
dramatic: the step in αx at the FM transition is negative, while the steps in
αy and αz are positive. This anisotropic behaviour in the polycrystals should
not effect the true behaviour of the volume coefficient because β =

∑
i αi

with i = x, y, z. The origin of the anisotropy is not understood, but possibly
crystallites with preferred directions form due to strong temperature gradients
upon cooling after the arc melting process. The data along the three orthogo-
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Figure 5.3: Coefficient of linear thermal expansion along the three orthogonal direc-
tions, x (O), y (◦) and z (�), of the polycrystalline samples of the U(Rh,Ru)Ge series
with x = 0.10 (top frame), x = 0.20 (middle frame) and x = 0.38 (bottom frame).
Notice the different vertical scales. The solid lines represent the averaged contribu-
tion β/3, while the dashed vertical lines mark the FM transition determined in each
sample from β. The small structure at T ∼4 K in the data for x=0.38 is due to a
mismatch in the thermometer calibration.



5.2 U(Rh,Ru)Ge polycrystalline series 69

nal directions are then averaged and the result β/3 is shown in the same figure
for each sample (solid lines in fig. 5.3).
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Figure 5.4: Coefficient of volume thermal expansion for polycrystalline URh1−xRuxGe
with x=0.10 (dashed line), 0.20 (solid line) and 0.38 (dashed dotted line). For com-
parison the single crystal data for pure URhGe are shown [134] (dotted line). The
thin line represents the Debye function with ΘD=210 K.

In fig. 5.4 we plot β for the polycrystalline samples over a wide temperature
range, together with the β(T ) data obtained for a single crystalline sample
with x = 0 [134]. For temperatures T > 50 K these data on the pure com-
pound roughly follow a phonon term (i.e. a Debye function) with ΘD=210 K
(thin line in the figure). This phonon contribution is calculated from the spe-
cific heat data (15 K < T < 40 K) [92] assuming Γlat = 2 [49]. This analysis
is in agreement with previous analysis of thermal expansion [139] and spe-
cific heat data [140, 141]. Notice that the volume thermal expansion for all
polycrystalline samples for T > 20 K is smaller than for the undoped single
crystal. This is unexpected because the lattice contribution should not change
dramatically with chemical substitution.

The low temperature part of the β(T ) curves is presented as β/T versus T
in fig. 5.5. Again the data on the undoped single crystalline URhGe sample
are plotted for comparison. A sharp ferromagnetic transition at TC=9.7 K
characterizes the pure compound. The FM transitions present in the samples
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Figure 5.5: Coefficient of volume thermal expansion β(T ) divided by temperature
versus temperature for polycrystalline samples with x=0.10, 0.20 and 0.38, as indi-
cated. For comparison, the data on the undoped single crystalline URhGe sample
taken from ref. [134] are plotted. The extracted Curie temperatures are indicated for
each sample.

with x=0.10 and 0.20, at TC=10.7 K and 8.4 K respectively, are much broader
due to the polycrystalline nature of the samples. These transition temper-
atures are determined from equal-area (length conserving) constructions for
the broadened steps in α vs. T [142]. The data of the polycrystalline sample
with xcr=0.38 do not show a FM transition down to 1 K, as expected from
the phase diagram [92]. On the other hand the expected diverging behaviour
β/T ∝ T−2/3 for a FM SDW QCP [23] is not observed.

It is interesting to consider the pressure dependence of the Curie temper-
ature calculated using the Ehrenfest relation (eq. 2.21 in sec. 2.1.4) for the
different doping levels. Since the specific heat has always a positive step ∆c
at TC and, in this case, the step ∆β is positive as well, dTC/dp > 0 for x=0.10
and 0.20. Thus applying pressure drives the doped compound away from the
critical point as for pure URhGe. The results are reported in table 5.1.
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∆c/TC (J/mol K2) ∆α (10−6 K−1) dTC/dp (K/kbar)

x=0.10 0.21 3.09 0.05

x=0.20 0.18 4.60 0.09

Table 5.1: Hydrostatic pressure dependence dTC/dp of the Curie temperature for
polycrystalline samples URh1-xRuxGe with x=0.10 and x=0.20. dTC/dp is calculated
as Vm∆β/(∆c/TC) ,where Vm is reported in the following section 5.2.2.

5.2.2 Grüneisen ratio

The thermal expansion data are compared with the specific heat data to
calculate the Grüneisen ratio:

Γ(T ) =
Vm

κT

β(T )
c(T )

(5.1)

The molar volume Vm is calculated for each Ru-concentration from the lat-
tice parameters reported in ref. [135]. We obtain Vm =3.364×10−5 m3/mol,
3.357×10−5m3/mol, and 3.344×10−5 m3/mol for x=0.10, 0.20, and 0.38 re-
spectively. The compressibility is estimated at κT=0.8 Mbar−1 [134]. The
calculated Γ(T ) curves are shown in fig. 5.6.

Apart from the curve for the sample at the critical concentration, all the
curves are quite similar at high temperature (T > 15 K). For T > 25 K all the
four curves level off around a value Γlat=2 [49]. The samples with x=0, x=0.10
and x=0.20 show a FM transition, sharp and clear for the first sample, broad
for the other two samples. The sample with xcr = 0.38 does not show a FM
transition: Γ(T ) shows a broad maximum around 8 K. This is not expected:
instead of diverging as predicted for a FM SDW QCP, Γ(T ) attains a value of
4 at T ∼9 K and smoothly decreases at lower temperatures.

5.2.3 Discussion

The Curie temperatures TC determined by the thermal expansion measure-
ments are in good agreement with previous results obtained by resistivity,
magnetization, susceptibility and specific heat [92]. The resulting phase dia-
gram TC(x) is shown in fig. 5.7.

At high temperatures β(T ) of the doped polycrystalline samples present a
significantly smaller phonon contribution than reported for the undoped sin-
gle crystal1 (fig. 5.4). Such a difference is not observed in the specific heat

1As it will be shown in sec. 5.5, the same effect is observed for the doped single crystal
with xcr = 0.38. This observation allowed us to conclude that the smaller high temperature
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Figure 5.6: Temperature variation of the Grüneisen ratio Γ(T ) of the polycrys-
talline U(Rh,Ru)Ge series with x=0.10, 0.20, and 0.38. The data obtained for single
crystalline URhGe are plotted for comparison [134]. The dashed line indicates the
Grüneisen ratio Γlat ∼2.

data [92] which however extend up to 40 K only. The unexpected reduced
phonon contribution is not yet understood. Possibly inelastic neutron scatter-
ing (INS) experiments could shed some light on this problem by determining
the phonon dispersion curve. Thermal neutrons are a powerful probe to de-
tect collective excitations such as phonons in crystals since they have both the
right wavevector and energy to interact with phonons [143, 144].

The coefficient of volume thermal expansion β(T ) at low temperatures shows
a pronounced f-electron contribution, as already was deduced from the specific
heat [140] and the thermal expansion [139] data of URhGe. In refs. [92, 139,
140] the low temperature behaviour was attributed to an enhanced electronic
contribution due to ferromagnetic spin fluctuations. In the ferromagnetic state
the specific heat and the thermal expansion were characterized by a lattice
contribution ∝ T 3, a spin-wave contribution ∝ T 3/2 and a ferromagnetic spin
fluctuation contribution that leads to an enhanced electronic term, linear in
T . Here a similar analysis is made for the doped polycrystalline samples.

contribution is not related to the the polycrystallinity of the samples but possibly to an
effect of the doping.
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Figure 5.7: Curie temperature of URh1−xRuxGe alloys as a function of the Ru concen-
tration, TC(x). The empty symbols are taken from ref. [92], while the filled symbols
are determined by thermal expansion measurements on polycrystalline samples. The
TC(0) data point is determined by thermal expansion measurements on the single
crystalline sample, while the TC(0.38) (gray dot) is estimated to be zero since no
transition is observed.

The lattice contribution is small at low temperature but it can be estimated
from the specific heat data. From eq. 5.1 and considering only the lattice
contribution βlat = bT 3 and clat = β̃T 3 we calculate:

b =
κT

Vm
Γlatβ̃ (5.2)

where β̃ is the coefficient of the T 3 term in the specific heat. Considering
Γlat=2, β=0.60×10−3 J/mol K4 (for all the samples) [38] and an average value
Vm/κT=4.20×106 m3/mol Pa, we estimate the coefficient of the phonon con-
tribution to the thermal expansion b = 3.0× 10−10 K−4. This value is in good
agreement with the low temperature slope of the Debye function presented in
fig. 5.4. As it is clear from fig. 5.8, the phonon contribution its negligible at
low temperature. Considering β/T as in fig. 5.5, the lattice and spin-wave
contributions vanish at T=0. The linear electronic contribution, enhanced
due to spin fluctuations, is estimated from the low temperature smooth ex-
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trapolation of β/T when T → 0. For x=0 at T=0, β/T=5.8×10−7 K−2

was obtained in ref. [139]. We obtain β/T=0.43×10−7 K−2 for x=0.10 and
β/T=3.1×10−7 K−2 for x=0.20.
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Figure 5.8: Coefficient of electronic volume thermal expansion βel as a function of
temperature of the polycrystalline series URh1-xRuxGe for x=0, 0.10, 0.20. The lines
represent the fits βel(T ) = cT + dT 3/2e−∆/kBT in the FM region. The lowest line
represents the lattice contribution as indicated in the plot. Inset: low temperature
fitting function of the URhGe data with non zero (∆/kB = 5) or zero (∆/kB = 0)
energy gap, as indicated.

A more detailed analysis follows from the considerations made concerning
the specific heat [38]. As mentioned previously, for x=0 cel = γT + δT 3/2

[38]. In the ordered state the c/T behaviour changes upon doping due to the
opening of a gap in the magnon spectrum [46]. The electronic specific heat
is described as cel = γT + δT 2/3e−∆/kBT [38], where ∆ is the energy gap and
kB is the Boltzmann constant. In the same spirit we analyse the electronic
contribution to the volume thermal expansion in the FM region by:

βel(T ) = cT + dT 3/2e−∆/kBT (5.3)

where c is coefficient of the enhanced electronic contribution linear in T , d
is the coefficient of the spin-wave contribution and ∆ accounts for the gap
opening, as in the specific heat. The solid lines in fig. 5.8 represent the fits in
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the FM region of the data sets of the samples with x=0, 0.10, and 0.20. The
fit parameters are summarized in table 5.2.

c [10−7 K−2] d [10−6 K−5/2] ∆/kB [K] T range
x=0 5.2± 0.6 0.43± 0.04 5± 2 T < 6.5 K
x=0.10 1.5± 0.1 1.4± 0.1 12± 1 T < 7 K
x=0.20 3.9± 0.2 1.1± 0.1 6.8± 0.8 T < 5.5 K

Table 5.2: Fit parameters for the data in the FM region for the samples with x=0,
0.10 and 0.20. The fitted function cT + dT 3/2e−∆/kBT is used in the temperature
range given by the last column. The maximum temperature considered is (2/3) TC.

Notably a (very small) gap contribution is needed to fit the data of the pure
compound. In the inset of fig. 5.8 the fit of the undoped compound data is
compared with a similar fit with zero energy gap. The effect of a non-zero
energy gap is to damp the spin-wave contribution, diminishing the number of
magnons involved in the magnetic contribution to the thermal expansion. All
the fits are approaching βel=0 as T →0. The value of the energy gap ∆ for
x=0.10 is in good agreement with the one reported in ref. [38]. The thermal
expansion data on the sample with x=0.20 show that the gap becomes smaller
for higher Ru concentration. However we cannot compare the value of ∆ from
the analysis of β with the one from the analysis of c/T for x=0.20 because, as
printed out in ref. [38], the c/T curve seems to follow a different function from
the ones of the lower doping levels. The values of c reported in the second
column of table 5.2 are comparable with the extrapolated estimates of β/T
reported in the beginning of this section. The β/T value for x=0.10, that
did not appear to be in line with the magnitude of the surrounding doping
levels, is comparable to the others when a non-zero energy gap ∆ is taken into
account in the fitting function.

A further analysis of β for x=0.38 is made in fig. 5.9, where we compare
β(T ) and c(T ) measured on the same sample. The Grüneisen ratio is shown in
the inset. The temperature dependence of β(T ) at low temperature is weaker
than that of the specific heat c(T ). Concurrently the Grüneisen ratio slowly
decreases at low temperatures in a quasi-linear way (1 K ≤ T ≤ 5 K). This
suggests an unusual behaviour βcr ∝ T 2lnT , since the specific heat follows
the predicted behaviour for a FM SDW QCP in 3D, c ∝ -T ln(T/T0) (critical
behaviour), in the same temperature range. From the critical behaviour of
the specific heat a value T0=41 K was estimated (see sec. 5.1). Using the
value of T0 we can calculate the temperature below which Γ(T ) should start
to increase: Tmin = T0e

−3/2 ∼9 K (see sec. 2.2.2). This is not observed in our
data, as shown in fig. 5.9. We conclude this thermal expansion data on the
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Figure 5.9: Thermal expansion β (left axis, line) and specific heat c (right axis, dots)
as a function of temperature for polycrystalline URh0.62Ru0.38Ge. Inset: Grüneisen
ratio as a function of temperature. In this figure the representative error bars for
different temperature regimes are shown.

polycrystalline sample do not support the theory proposed in ref. [23].

5.3 Characterization of the single crystal (xN = 0.38)

Ideally, the next step in our research programme is to investigate the
Grüneisen ratio for a single crystal URh1−xRuxGe, where x = xc refers to
the critical concentration. However growing a single crystal with the right
composition appeared to be very difficult. In the following we describe these
attempts and characterize the prepared crystals. Three single crystalline sam-
ples were prepared with nominal concentration xRu=0.38 (two crystals labelled
sc#1 and sc#2) and xRu=0.39 (one crystal labelled sc#3). The crystal sc#1
was characterized by means of resistivity ρ (sc#1-r) and susceptibility χac

(sc#1-ac), while crystals sc#2 and sc#3 were characterized by χac only. In
the vicinity of the QCP resistivity is not a good probe to detect the ferromag-
netic phase transition as its signature becomes very weak. However a magnetic
probe like ac-susceptibility is capable of detecting TC close to the QCP. The
value of TC can be used as an indication of the real concentration of Ru in
the sample (see fig. 5.7). Notice EPMA cannot resolve the concentration of
Rh and Ru to better than 1% and that the Ru and Rh characteristic emission
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Figure 5.10: Resistivity of single crystalline U(Rh,Ru)Ge sc#1-r for a current I along
the a, b and c axes (figure taken from ref. [92]). The resistivity is plotted versus Tn,
where n represents a nFL exponent. The behaviour ρ = ρ0 +Tn is shown by the solid
lines.

The ac-susceptibility, with a driving field Hac ∼ 10−5 T, and resistivity were
measured in the Heliox in the temperature range 0.24 K < T < 6 K.

The resistivity of sc#1-r was measured by Dr. N. T. Huy [92] for a current
I along the three crystallographic axes. The data are shown in fig. 5.10 in
a plot of ρ vs Tn. No magnetic order is observed. The resistivity values
for I‖a are a factor 3/2 larger than for I‖b and I‖c. For all the three axes,
the residual resistance ratios are quite low, RRR ∼2, as expected since the
non-stoichiometry brings about disorder. The data are fitted as ρ ∼ Tn with
exponents n of 1.2 (I‖a), 1.4 (I‖b) and 1.1 (I‖c). These values of n indicate
non Fermi liquid (nFL) behaviour, but differ from nnFL=5/3 as predicted for
an itinerant FM QCP. This can be attributed to disorder. Notice, the data on
a polycrystalline sample URh0.62Ru0.38Ge (with a similar RRR) show n=1.2,
as well as a recovery of the FL behaviour when a magnetic field of 10 T is
applied [92]. We conclude that the exponent n extracted from the resistivity
data is a clear sign of nFL behaviour, although its value is reduced by disorder.

AC-susceptibility measurements were performed on a part (labelled p#1-
ac) of U(Rh,Ru)Ge sc#1 and the data are reported in fig. 5.11. Here the χac
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Figure 5.11: AC-susceptibility as a function of temperature for the single crystalline
sample U(Rh,Ru)Ge sc#1 p#1-ac. The Ru-doping data indicates that magnetic order
is present in the sample with TC=0.5 K. The real concentration is estimated at 37.5
at.% Ru.

peak at T=0.5 K is a clear sign of FM order in the sample. Comparing the
magnetic transition temperature to TC(x) for the polycrystalline samples (see
fig. 5.7) we conclude that the sample orders ferromagnetically and that the
real concentration of Ru is x=0.375, rather than the nominal concentration
xcr=0.38. The height of the peak in χac is comparable to that of the poly-
crystalline sample with x=0.375 [92]. The same conclusion was drawn for a
second piece of the same single crystal (from U(Rh,Ru)Ge sc#1 p#2-ac, data
not shown).

For sc#2, a deeper characterization involving different parts of the sam-
ple was made, in order to investigate a possible composition gradient along
the growth direction of the single crystal (fig. 5.12). Three pieces were taken
from different parts of the single crystal sc#2 in the form of bars along the c
axis. Ac-susceptibility data show that the different bars have different tran-
sition temperatures: TC = 1 K for the top part, 0.7 K in the middle and
TC < 0.23 K at the bottom of the crystal. This shows that a composition
gradient of ∼2 at.% Rh/Ru concentration is present in the as-grown crystal
from top to bottom. For sc#2 we estimate the Ru concentration varies from
x ∼ 0.36 at the top to x & 0.38 at the bottom. The gradient is related to the
non-stoichiometry of the compound and to the growth technique (Czochralski
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Figure 5.12: AC-susceptibility as a function of temperature for three samples taken
from different parts of single crystalline U(Rh,Ru)Ge (sc#2). The Curie temperatures
TC, when present, are indicated by the arrows. In all cases Hac ∼ 10−5 T was applied
along the c axis. The arrow next to the sketch of the sample represents the pulling
direction during the growth.

growth). Apparently in the beginning of the growth the crystal has the ten-
dency to be Rh-richer than desired, towards the stoichiometric composition
URhGe or due to a slightly different temperature at the liquid-solid interface.
However, while the growth continues, the concentration of Rh in the melt de-
creases and the concentration of Ru in the solid increases. This results in a
positive Ru gradient from top to bottom.

In order to slightly increase the Ru concentration in the crystal we decided
to grow a crystal from a polycrystalline batch prepared with excess of Ru
(x=0.39, sc#3). AC-susceptibility data taken on a piece of sc#3 were quite
promising, showing no FM transition but a rather flat signal (x > xcr) (data
not shown). Following the results on the previous crystal sc#2, we expected
to find a part of sc#3 with x = xcr (between the top and the middle part,
according to the previous results). Nevertheless further measurements of the
coefficient of thermal expansion showed that FM order was still present in the
sample we selected from sc#3.
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5.4 Thermal properties of the single crystal (xN = 0.38)

The thermal expansion and the specific heat were measured on several sin-
gle crystalline samples of U(Rh,Ru)Ge with x ∼ xcr. The specific heat was
measured on two pieces of sc#1 and the thermal expansion on two pieces of
sc#1, one piece of sc#2 and one piece of sc#3. The specific heat data were
taken in the 3He system in the temperature range 0.5 K < T < 40 K and
B=0, and in the range 0.5 K < T < 15 K for B 6=0. The thermal expansion
data were taken in both the Heliox (0.24 K < T < 15 K) and the glass dewar
system (T > 2 K). The data on the specific heat of URh0.62Ru0.38Ge sc#1
p#1 were already reported in ref. [92] with a detailed analysis. These data
are discussed in the following discussion section where a comparison with the
thermal expansion data is made.

5.4.1 Thermal expansion
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Figure 5.13: Coefficient of linear thermal expansion versus temperature of
URh0.62Ru0.38Ge sc#1 p#1. Data are taken along the three orthogonal axes as
indicated.

The linear thermal expansion coefficient of URh0.62Ru0.38Ge sc#1 p#1 is
reported in fig. 5.13. The data reveal a strong anisotropy for the three crystal-
lographic axes. Similarities with α(T ) measured on the polycrystalline sam-
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ple, reported in fig. 5.3, are present. This indicates that the anisotropy of the
polycrystalline sample is related to the presence of preferred directions during
sample preparation. For T > 30 K the data along the three crystallographic
axes have an similar slope dα/dT . For T > 35 K the Debye contribution is
dominant. Upon lowering the temperature, αa first steadily decreases, then
reaches a plateau value for 15 K, and below 5 K rapidly goes to 0. The steep-
est temperature variation at low temperature is observed for αa. Instead αc

is negative for T < 10 K and smoothly approaches T=0. The behaviour of
αb is similar to that of αa, with a long plateau below 30 K, but αb does not
decrease as dramatically as αa to zero when T → 0.
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Figure 5.14: Electronic contribution to the coefficient of volume thermal expansion
of the U(Rh,Ru)Ge series for x=0 (single crystal), x=0.10, x=0.20 (both polycrys-
talline samples) and x=0.38 (single crystal sc#1 p#1). Inset: Electronic contribution
to the coefficient of volume thermal expansion of the single crystalline sample with
x=0.38. The solid line represents a fit to y = a+ bTn with n=0.25 for T < 5 K (see
sec. 5.4.2). The dashed area indicates the ferromagnetic region as determined by the
ac-susceptibility data.

The coefficient of volume thermal expansion of the sample with x = 0.38
(sc#1 p#1) is calculated by adding up the values of α along the three crystal-
lographic axes, β = αa + αb + αc. The electronic contribution is obtained by
subtracting the lattice contribution, βel = β− bT 3, with b = 0.30× 10−9 K−4,
as done for the polycrystalline samples (see sec. 5.2.3). In fig. 5.14 we compare
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this result with βel of the samples with lower Ru concentration (sec. 5.2). Upon
lowering the temperature, no magnetic transition peak is detected for x = 0.38
down to the lowest measured temperature and βel smoothly approaches T=0
as βel ∼ a+ Tn where n = 0.25 < 1/3.

5.4.2 Discussion
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Figure 5.15: Comparison between the coefficient of volume thermal expansion divided
by the temperature β/T (right vertical axis) and the ac-susceptibility χac (left vertical
axis) of URh0.62Ru0.38Ge sc#1 p#1. The FM transition temperature TC=0.5 K,
corresponding to the peak of χac (vertical dotted line), accounts for the drop in β/T
for T < 1 K.

In fig. 5.15 we compare β(T )/T of U(Rh,Ru)Ge sc#1 p#1 with the
ac-susceptibility χac measured on U(Rh,Ru)Ge sc#1 p#1-ac (sec. 5.3 and
fig. 5.11). Upon lowering the temperature β(T )/T slowly increases. For
T < 1 K the increase stops. The comparison shows that β(T )/T and χac drop
at the same temperature T=0.5 K, which reveals that the drop in β(T )/T
is related to the magnetic order present in the sample. The presence of the
FM phase is less evident in β(T ). A simple power law fit of these data for
temperatures T < 5 K gives

βel(T ) = (−1.9± 0.1)× 10−6 + (2.6± 0.1)× 10−6T 0.25±0.01

with a temperature exponent close to the theoretically predicted value 1/3
and an unexpected negative term for T = 0 (fig. 5.14). This term is explained
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considering that FM order is still present in the sample and a transition will
occur at lower temperature. In this option β(T ) does not drop to zero with a
power law but becomes negative due to a phase transition peak for T < 0.3 K.
This hypothesis is corroborated by the fact that β(T ) = 0 at T ∼ 0.28 K.
The possibly negative ∆β at the FM transition implies a negative response
of TC to pressure. In U(Rh,Ru)Ge, in the vicinity of the FM QCP, applying
pressure would therefore depress the Curie temperature. The value ∆β at TC

changing sign when approaching the QCP was observed also for CePd1-xRhx

[127, 145], the other example of a FM QCP reported in the literature, and
for AFM compounds (for instance CeIn1-xSnx [146]). The sign change is still
under discussion [147].
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Figure 5.16: Coefficient of volume thermal expansion divided by temperature β/T
as a function of the temperature for URh0.62Ru0.38Ge sc#1 and sc#2. The arrows
mark the FM transition temperatures TC=0.5 K for sc#1 and TC=0.7 K for sc#2.
The line is a fit to the expected critical behaviour β ∝ T−2/3 of the data of sc#1 for
T > 3.5 K.

In order to follow the FM contribution as a function of the concentration,
we next present the thermal expansion data taken on a piece of the second
crystal (U(Rh,Ru)Ge sc#2, for which the ac-susceptibility was mapped along
the length of the crystal). The sample under study was cut between the bottom
(x > 0.38) and the middle part (x ∼ 0.37) of the crystal (see fig. 5.12). We
therefore expect a sample with Ru-concentration x ∼ 0.38. To check the
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effective Ru-concentration of the sample, we plot β/T versus T , since the low
temperature FM transition is more visible in this way. In fig. 5.16 β/T for
sc#1 and sc#2 are compared. The FM transition is revealed by the drop
of β/T at TC, as previously discussed. The data show TC=0.7 K for sc#2,
meaning that x = 0.37. The results of αa, αb and αc for sc#1 and sc#2 are
compared in fig. 5.17. Since the a-axis qualitatively shows the same behaviour,
while in αb and αc of sc#2 the FM transition is clearly visible (the Curie
temperature is indicated by a maximum (minimum) in αb (αc)), we conclude
that the b and c axes are more sensitive to FM order. Notice that these
two samples were prepared at the same nominal concentration x=0.38, both
have a lower and very similar (∆xRu ∼ 0.005) effective concentration, but
the thermal expansion coefficients change considerably. This result shows how
small changes in Rh/Ru concentration strongly influence the behaviour of β
close to the FM QCP in U(Rh,Ru)Ge.
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Figure 5.17: Coefficient of linear thermal expansion of samples URh0.62Ru0.38Ge sc#1
and sc#2. The solid lines give α(T ) for sc#1 while the symbols give α(T ) for sc#2.
An identical colour is used for the same crystallographic axes of the different crystals.
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Figure 5.18: Grüneisen ratio of the U(Rh,Ru)Ge series. The dashed line indicates
the theoretical value of lattice contribution to the Grünisen parameter, Γlat = 2. The
arrows indicate the FM transition temperatures for each concentration.

5.4.3 Grüneisen ratio

The Grüneisen ratio of URh0.62Ru0.38Ge sc#1 is reported in fig. 5.18 to-
gether with the data of the samples with a lower Ru concentration. For calcu-
lating the Grüneisen ratio (eq. 5.1) the same molar volume Vm and compress-
ibility κT as used for the polycrystalline sample at the critical concentration
are taken. At high temperatures the single crystal data are similar to the data
of the other samples. For T > 20 K all the data sets attain a similar value
and reach Γlat = 2 near T ∼ 30 K. At low temperatures a clear depression of
the Curie temperature is visible, as in the FM phase diagram [38]. The data
level off at ΓFM=14 [139]. For x = 0.38 the FM transition is observed as a
drop in the data at the Curie temperature TC = 0.5 K. Clearly, TC → 0 but
the ferromagnetism is not yet fully suppressed.
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5.5 Critical contribution in single crystalline
URh0.62Ru0.38Ge

In order to investigate the expected criticality in U(Rh,Ru)Ge we analyse
next the thermal expansion, the specific heat and the Grüneisen parameter of
sc#1 p#1. The thermal expansion and specific heat data have been taken on
the same single crystalline sample. The Grüneisen ratio is calculated using
eq. 5.1.
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Figure 5.19: Coefficient of volume thermal expansion of URh0.62Ru0.38Ge sc#1 p#1.
The arrow in the plot marks the low temperature region where β(T ) deviates from a
T 3 + T behaviour (phononic and electronic contributions). The solid line represents
the lattice contribution as indicated. Inset: electronic coefficient of volume thermal
expansion βel(T )=β(T )−bT 3 as a function of temperature. The dashed line indicates
a fit to βcr(T ) = T 1/3 for the data in the temperature range 3.5 K < T < 8 K. The
arrow marks the deviation of βel(T ) from βcr(T ).

In the present case, at low temperature, four different contributions are
present for both the thermal expansion and the specific heat: a phonon con-
tribution (∼ T 3), an enhanced electronic contribution (∼ T ), a FM contribu-
tion and a critical contribution (we expect βcr ∼ T 1/3 and ccr ∼ −T lnT/T0).
The FM contribution is centered around TC ∼ 0.5 K, as we concluded from
the ac-susceptibility data. Since the critical contribution is supposed to be
negligible at high temperature, we assume that for T > 15 K a non-critical
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contribution is given by the sum of the linear electronic term plus the phonon
term (T + T 3). For the thermal expansion data the fit for T > 15 K results
in:

βno-cr(T ) = (2.14± 0.01)× 10−7 T + (0.44± 0.01)× 10−10 T 3

where the extracted βno-cr/T at T = 0 (T -linear term) is in agreement with
the previous values on the crystals with x=0 and x=0.20 while the value
b = 0.44×10−10 K−4 is one order of magnitude smaller than the one estimated
from the specific heat data. The origin of this inconsistency is still unclear, but
is connected to the different high temperature β for pure and doped samples
reported in fig. 5.4 (see sec. 5.2.3. At high temperature the doped compounds
presented a much smaller phonon contribution (comparable with the value
of b from the fit) than the one of the undoped compound (comparable with
the estimation made using the specific heat data). Nevertheless, this does
not influence our analysis since at low temperature the phonon contribution
is negligible (as shown in fig 5.19 by the solid line) and the T -linear term
is not affected by such a difference in the phonon contribution (within 3%).
Therefore the value used previously, b = 0.30 × 10−9 K−4, is used in the
following. The electronic contribution βel(T ) = β(T ) − bT 3 is plotted in the
inset of fig. 5.19 together with the expected critical behaviour for a 3D FM
QCP (dotted line) assuming αcr for 3.5 K < T < 8 K. The deviation from the
expected T 1/3 behaviour of βel for T < 3.5 K is attributed to the FM order.

A slightly different approach to the analysis of βel is presented in fig. 5.20.
Here the data are plotted as a function of T 1/3. In the range 3.5 K < T < 8 K
the data are fitted by a linear function with zero intercept

βel(T ) = (1.135± 0.002)× 10−6T 1/3. (5.4)

The deviation from the linear fit below 3.5 K is again attributed to the FM
transition. This analysis supports the previous one, although the temperature
range of the fit is too small to draw any firm conclusion.

The specific heat appears to be less sensitive to magnetic order than the
thermal expansion, as observed for the polycrystalline sample as well. Nev-
ertheless, at low temperatures a deviation from the critical behaviour is ob-
served (see fig. 5.21). The measured data are fitted in the temperature range
11 K < T < 22 K with a polynomial function (electrons ∼ T and phonons
∼ T 3)

cno-cr

T
= (0.086± 0.001) + (6.03± 0.05)× 10−4T 2

with γ=86 mJ/mol K2 and β=0.603 mJ/mol K4. The values of γ and β are
comparable to the values obtained on the polycrystalline samples [38, 92]. The
electronic contribution to the specific heat cel(T ) = c(T )− βT 3 is reported in
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Figure 5.20: Electronic contribution to the volume thermal expansion of
URh0.62Ru0.38Ge sc#1 p#1 as a function of T 1/3. The solid line represents the
linear fit to the data in the temperature range 3.5 K < T < 8 K (indicated by the
arrows), with zero intercept. The dashed lines are the confidence lines given by the
linear fit. The lower solid line represents the lattice contribution as indicated.

the same plot (fig. 5.21, empty circles). The data for 1 K < T < 8 K are fitted
by a function linear in lnT :

cel(T )/T = (0.222± 0.001) + (−0.056± 0.001)lnT. (5.5)

As in the thermal expansion, a deviation from the critical behaviour is
observed at low temperature (T < 1 K), where the FM transition takes place.

For the single crystalline sample we calculate T0 = 51 K (where the linear
fit intercepts the horizontal axis), comparable with the value obtained for
the polycrystalline sample. For temperatures T � T0 the critical behaviour
becomes important. According to the previous consideration, we expect a
divergence for Γ in the temperature range 3.5 K < T < 8 K, much below
T0 and above the temperature for magnetic order. In fig. 5.22 the electronic
contribution of Γel ∝ αel/cel for URh0.62Ru0.38Ge sc#1 p#1 is reported. The
value of T0 is outside our temperature range. We compare our experimental
data with the critical behaviour extracted from the previous analysis, Γcr ∝
αcr/ccr (dashed line). The dashed curve is the predicted critical behaviour
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Figure 5.21: Specific heat divided by temperature of URh0.62Ru0.38Ge sc#1 p#1 on
logarithmic temperature scale. The filled dots represents the measured data. The high
temperature fit to cno-cr(T )/T = γ + βT 2 (dashed line) accounts for the electronic
and phononic contribution. The empty circles represents the electronic contribution
to the specific heat, cel(T ) = c(T ) − βT 3. The solid line along these data is the
linear fit (theoretical critical prediction) for 1 K < T < 8 K. The arrow indicates the
deviation from the critical behaviour for T < 1 K.

obtained by dividing the fit to the thermal expansion (eq. 5.4) by the fit to
the specific heat (eq. 5.5) and multiplying by Vm/κT. We observe a good
agreement between the data and the fit in the considered temperature range.
The divergence of Γ illustrated by the dashed line in fig. 5.22 differs from the
AFM case [15, 148, 149] (see also sec. 2.2.2). Notably, the predicted diverging
function is not monotonically decreasing with T but has a minimum at Tmin =
T0e−3/2. The divergence possibly occurs at very low temperatures after a
plateau that is possibly wide in temperature (depending on the parameters of
the function, as illustrated in fig. 2.2). In our case Tmin=11 K and the wide
Γ(T ) plateau is evident in fig. 5.22. Moreover, the divergence takes place in
the region of magnetic order, preventing its observation.

Although we do not observe a diverging Γ, the previous analysis brings us
to a different conclusion than the one drawn for CePd1−xRhx. In the latter
system a non-diverging Γ provided evidence for the absence of a quantum crit-
ical point. Detailed magnetization and ac-susceptibility experiments showed
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FM indicates TC measured by χac, while Tmin marks the minimum of the dashed line
function.

that the suppression of the FM order by Rh-doping in CePd leads to the for-
mation of a peculiar Kondo-cluster-glass [128]. The presence of clusters and
the power-law corrections to susceptibility and magnetization indicate that
the expected QPT is replaced by disordered phases, possibly like the Griffiths
one [129]. In the case of U(Rh,Ru)Ge, the single crystal data presented in this
section are not inconsistent with the diverging function predicted by ref. [23].

5.6 Summary

In this chapter we have investigated the feasibility to tune URhGe by Ru
doping to the FM QCP (at 38 at.% Ru) and probe the diverging Grüneisen
ratio. The results reported in this chapter allow us to draw a number of
conclusions, which in turn raise several new questions.

First, we address the results obtained on the polycrystalline samples.
The thermal expansion of a series of polycrystalline URh1−xRuxGe samples
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(x=0.10, 0.20 and 0.38) was measured and the coefficient of volumetric ther-
mal expansion β(T ) was determined. The Grüneisen ratio was calculated
using specific heat data taken on the same samples [92]. For the samples with
x=0.10 and 0.20 a large contribution to β(T ) due to ferromagnetic order was
observed, with Curie temperatures of 10.7 K and 8.4 K, respectively. The data
below TC were analysed using a spin wave contribution with a gap ∆/kB of the
order of 10 K, in close analogy with the analysis of the specific heat [92]. From
the step-sizes of β(T ) at TC we derived - using the Ehrenfest relation - that
upon applying pressure the Curie temperature increases at a rate of 0.05 and
0.09 K/kbar, respectively. The sample prepared at the critical concentration
for FM order, x=0.38, did not show ferromagnetic order, as expected. From
its Grüneisen ratio it was shows an unusual βcr ∼ T 2lnT behaviour, rather
than the predicted diverging β ∼ T−1/3. Nevertheless, when we compare the
results of the different samples, a steady rise of Γ(T ) is observed in the param-
agnetic regime on approach of the ferromagnetic transition (see fig. 5.6): from
Γ(T ) ∼ 2 at 40 K to Γ(T ) ∼ 12 − 14 just above TC. A possible reason why
the enhancement of the Γ value towards the critical point does not persist
for x=0.38 might lie in the strong effects the precise composition and sample
homogeneity may have on the behaviour of β(T ) close to the critical point, as
was found in the single crystal data.

Several single crystals of URh1−xRuxGe with x ∼ 0.38 were prepared using
the Czochralski technique. Characterization of the samples by means of re-
sistivity and ac-susceptibility together with thermal expansion measurements
showed it was not possible to obtain single crystals precisely at the critical
concentration xcr: a typical variation of 2% in the Rh/Ru ratio was observed
along the crystal pulling direction. Thermal expansion measurements were
performed on several (pieces of the) crystals. All samples showed a finite Curie
temperature, typically of the order of 0.5 K, which complicated the analysis
of the data. The Grüneisen ratio of a single crystal with TC=0.5 K was in-
vestigated in detail. Thermal expansion measurements were carried out along
the three orthorhombic axes down to 0.24 K, and the specific heat was inves-
tigated down to 0.5 K [92]. The coefficient of thermal expansion is strongly
anisotropic. The largest contribution to β(T ) is due to the coefficient of linear
thermal expansion along the orthorhombic a axis. The β(T ) and c(T ) data
follow the theoretical functions for a 3D FM QCP, albeit in a small tempera-
ture window T=3.5-8 K, above the region of the FM transition. A deviation
from this behaviour for T < 1 K suggested an anomaly at lower temperature
associated to the magnetic transition, as confirmed by the ac-susceptibility
data. The deviation in c(T ) occurs at lower temperatures than that in β(T ).
This can be understood considering that the thermal expansion probes the
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pressure dependence of the entropy while the specific heat the temperature
dependence [54]. β is therefore more sensitive than c to (chemical-)pressure
variation of the system. The higher sensitivity of β compared to c near a QCP
was already observed in the case of CeCu6−xAgx [150, 151].

In fig. 5.23 we summarize the thermal expansion (upper frame) and specific
heat (middle frame) data of URh1−xRuxGe discussed in this chapter. We in-
cluded single-crystal data for x=0 and x=0.38 and polycrystal data for x=0.10
and 0.20. In the lower frame the temperature variation of the Grüneisen ratio
is presented. For β and c the phonon contribution is considered as well in
calculating the Grüneisen ratio. The close-to-critical behaviour stands out for
the sample with x=0.38. In contrast to the polycrystal data, β(T) of the sin-
gle crystal steadily increases with decreasing temperature and attains a value
of ∼14 before magnetic order sets in. We conclude that although we do not
observe a divergence of Γ(T ) for T → 0, the data are not at odds with the
FM QCP scenario presented in ref. [23]. This suggests that the U(Rh,Ru)Ge
system remains an arresting laboratory tool to study FM quantum critical-
ity. However, it is imperative to significantly improve the homogeneity of the
crystals. Since the Czochralski growth is based on the stoichiometry of the
sample, it is natural to ask whether such a technique is the most effective for
this case. Possibly a higher homogeneity might be accomplished by using the
floating zone technique in a mirror furnace.
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Figure 5.23: From top to bottom: coefficient of volume thermal expansion β divided
by temperature, specific heat c divided by temperature and Grüneisen ratio Γ. The
data are taken on the single crystalline URhGe (dashed line), on the polycrystalline
samples at x=0.10 (dotted line) and at x=0.20 (dashed-dotted line) and on the single
crystalline sample URh0.62Ru0.38Ge sc#1 p#1 (solid line). The dotted line marks the
Curie temperature of URhGe.
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6 Coexistence of superconductivity
and ferromagnetism in UCoGe

dunque ogni cosa giusta rivela il
suo contrario

Caparezza

The superconducting ferromagnet (SCFM) UCoGe was discovered in Am-
sterdam in 2006 [29]. Just like in URhGe, superconductivity and ferro-
magnetism coexist at ambient pressure. The ordered moment of UCoGe,
m0 = 0.07 µB, is very small which demonstrates superconductivity occurs
close to the border of FM order [29]. Recent work has shown that the FM
QCP can be attained by applying moderate pressure (∼ 0.1 GPa) and that
superconductivity is enhanced at the critical point [42]. This makes UCoGe
an excellent laboratory tool to study spin-fluctuation mediated superconduc-
tivity.

In this chapter we investigate the thermal properties of polycrystallline as
well as single crystalline samples by means of thermal expansion and specific
heat. The measurements provide solid evidence for bulk superconductivity.
Thermal expansion measurements in an applied magnetic field on single crys-
tals of UCoGe are used to investigate the response of the SC and FM phases
to a magnetic field.

6.1 Introduction

In the search for a FM quantum critical point in URhGe, several alloy sys-
tems have been investigated [92, 135]. Among these is the series U(Rh,Co)Ge.
The end compound UCoGe was reported to be paramagnetic down to 1.5 K ac-
cording to magnetization, resistivity [137, 152] and specific heat measurements
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[153]. This provided the motivation to alloy URhGe with Co. Magnetization
data taken on polycrystalline URh1−xCoxGe samples show that, upon dop-
ing, TC first increases, displays a broad maximum near x=0.6 (Tmax

C =20 K)
and then rapidly drops to 8 K for x=0.9 [135, 154]. Measurements for x=1.0
showed that UCoGe is, unlike as was concluded previously [137, 152, 153], a
weak itinerant ferromagnet. Moreover metallic ferromagnetism coexists with
SC at ambient pressure [29].

The intermetallic compound UCoGe crystallizes in the orthorhombic TiNiSi
structure [152, 155] with space group Pnma. It belongs to the family of the
UTX compounds, where T is a transition metal andX is Si or Ge, like URhGe.
The lattice constants of the conventional unit cell as determined by X-ray
diffraction are a=6.852(1) Å, b=4.208(1) Å and c=7.226(1) Å [155].

Resistivity, ac-susceptibility and specific heat measurements provide evi-
dence for a FM transition at TC=3 K and for a SC transition at Tsc = 0.61 K
(see fig. 6.1, polycrystalline sample labelled #2 [29]). The FM transition shows
up as a broad maximum in the ac-susceptibility χ′ac and as a hump in the re-
sistivity ρ(T ). The SC transition appears below 1 K as a drop to zero of the
resistivity ρ(T ) and a large diamagnetic signal in χ′ac. In polycrystalline sam-
ples the SC transition is relatively broad (∆Tsc ∼0.15 K). DC-magnetization
M(T ) measurements confirm the FM transition and the data extrapolate to
a polycrystalline averaged ordered moment m0=0.03 µB. FM order is further
corroborated by the hysteresis loop in M(B) at 2 K with a small coercive field
of 0.3 mT [29].

The magnetic transition is a robust property, as the M(T ), χ′ac and ρ(T )
data taken on different UCoGe batches almost coincide [29, 92]. The small
ratio of m0 to the effective moment (peff = 1.7µB [137]) shows UCoGe is a
weak itinerant ferromagnet [7, 156]. Unlike the magnetic properties, the SC
properties depend sensitively on the quality of the samples measured by the
residual resistance ratio RRR. The quality of the samples was improved by
annealing, as will be discussed in sec. 6.3. The sensitivity to defects, together
with the absence of Pauli limiting and the presence of FM, indicates that SC in
UCoGe is unconventional [29]. The anisotropy of Bc2 gives evidence of p-wave
superconductivity and points to an axial SC gap function with nodes along
the direction of m0 [39].

6.2 Thermal properties of polycrystalline UCoGe

Thermal expansion and specific heat measurements on polycrystalline sam-
ples of UCoGe presenting large anomalies at the transition temperatures
brought the first evidence that FM and SC are bulk properties [29].
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Figure 6.1: Resistivity (a), ac-susceptibility (b) and specific heat divided by temper-
ature (c) of polycrystalline UCoGe (sample #2, RRR=10). The ac-susceptibility was
measured with a small driving field of 10−5 T. A hump in ρ(T ), a maximum in χ′ac(T )
and an anomaly in c/T locate TC (dashed line). Superconductivity is found below
Tsc = 0.61 K in ρ(T ) and below 0.38 K in χ′ac(T ). In the specific heat experiment the
lowest temperature (0.5 K) was not low enough to detect SC. Data taken by Dr. N.
T. Huy [92].
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A polycrystalline sample of UCoGe was prepared with nominal composition
U1.02Co1.02Ge (sample #3). The as-cast sample was annealed for 10 days at
850 ◦C. Powder X-ray diffraction patterns at T = 300 K confirmed the TiNiSi
structure reported in the literature [152, 155]. Part of the annealed sample was
investigated using EPMA which revealed a matrix with a 1:1:1 composition
and a small amount (2%) of impurity phases [92]. Annealing improved the
quality of the sample as indicated by residual resistance ratio which increased
from a couple up to RRR ∼30. Afterwards, the sample was cut into a ‘cube’
with plane-parallel surfaces by means of spark erosion in order to be measured
in the dilatometer.

The coefficient of linear thermal expansion, α(T ), of the prepared polycrys-
tal was measured in the temperature range 0.24 K < T < 8 K in the Heliox
in zero field and B=1 T, and in the temperature range 2 K < T < 150 K
in zero field in the bath cryostat. Specific heat data were collected using a
semi-adiabatic method with a mechanical heat switch on sample #2 with a
mass m = 3 g for T=0.5-10 K (data taken by Dr. J. C. P. Klaasse [92]). In
addition specific heat measurements using a weak thermal link were carried
out on sample #3 with mass m = 0.1 g for T=0.1-1.0 K (data taken at the
University of Karlsruhe).

The data of α(T ) versus T were taken along two directions of the square
prism-shaped polycrystalline sample (dimensions ∼ 5 × 5 × 3 mm3). The
data sets agreed well with each other and here we concentrate on the data
in one direction only. The data are reported in fig. 6.2 in the temperature
range 0.3-150 K, together with resistivity data (single crystal measurements).
For comparison we plot in fig. 6.2 (upper frame) also a Debye function with
ΘD=200 K. This shows that for T & 80 K α(T ) is dominated by phonons.
Below ∼ 80 K an additional contribution is present. A comparison with the
resistance data (fig. 6.2, lower frame) reveals that this contribution is due to
the formation of a Kondo-lattice state, resulting in a coherent correlated metal
state at liquid Helium temperatures.

Below 4 K the FM and SC transitions appear. The α(T ) data in the low
temperature region are shown in more detail in fig. 6.3 (FM) and in fig. 6.4
(SC) together with a comparison with the specific heat, resistivity and ac-
susceptibility data. The ideal SC and FM transitions are sketched for both
ordered states using an equal length change method [142] (dashed-dotted lines
in the plots).

The FM transition width is large (∆TC ∼2 K). In the specific heat, the ideal-
ized transition has a step size ∆(c/T )=0.014 J/mol K2 at TC=3 K. The relative
change ∆(c/TC)/(c/TC) is only 25% and the associated magnetic entropy is
small (0.3% of Rln2), as expected for a weak itinerant ferromagnet with a small
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Figure 6.2: [upper frame] Coefficient of linear thermal expansion of polycrystalline
UCoGe (sample#3). The dotted line represents a Debye contribution with ΘD =
200 K. [lower frame] Resistance of single crystalline UCoGe (sc#4 ann#4) (data
taken by R. Huisman).

ordered moment [156]. The Sommerfeld coefficient (γ=0.057 J/mol K2) indi-
cates that UCoGe is a correlated metal but the electron interaction is relatively
weak. In the thermal expansion, FM order is observed as a large negative step,
∆α =-1.1×10−6 K−1 at TC=3 K with a relative change ∆α/α ≈ 3.3. This
shows the magnetic transition is a bulk phenomenon. Upon application of a
magnetic field B=1 T along the dilatation direction, the FM transition in α
is smeared out (fig. 6.3(b)).

As reported above, the ρ(T ) and χac(T ) data show UCoGe becomes super-
conducting below 1 K. Proof of bulk SC is obtained by the specific heat and
thermal expansion data (fig. 6.4). The specific heat shows a broad transition
with onset temperature T onset

sc ∼ 0.66 K. At this temperature the resistiv-
ity has dropped to zero. A rough estimate for the step size of the idealized
transition in the specific heat gives ∆(c/Tsc)/γ ≈ 1.0 at Tsc. This value is
smaller than the one for a conventional SC (according to the BCS theory
∆(c/Tsc)/γ = 1.43) but is comparable to the value found for URhGe [26]. In
the thermal expansion an equivalent, broad transition is observed. Assum-
ing an ideal transition, the step size ∆α ≈ 3.8×10−7 K−1 at Tsc=0.45 K, i.e.



6.2 Thermal properties of polycrystalline UCoGe 99

0 2 4 6 8- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0 ( b ) B = 0

 

 

� (
10

-6 
K-1 )

T  ( K )

  U C o G e  # 3

B = 1  T  | |  �L

T C = 3  K
T s c

5 0

6 0

7 0

c/T
 (m

J/m
ol 

K2 )

 

 

U C o G e  # 2

( a )
∼T 2

Figure 6.3: (a) Specific heat divided by temperature c/T versus temperature in zero
magnetic field (ZF) for sample #2. The T 2 phonon contribution is represented by the
solid line for temperature T >5 K. The idealized transition (dashed-dotted line) is at
TC=3 K. Bulk SC for sample #2 sets in at 0.38 K (measured by χac, see sec. 6.1) but
the c(T ) data extend down to 0.5 K only. Data taken by Dr. J. C. P. Klaasse [92].
(b) Coefficient of linear thermal expansion of polycrystalline UCoGe sample #3 in ZF
(empty symbols). The dashed-dotted line represents the ideal transition at TC=3 K.
The peak below 0.6 K is the thermodynamic signature of the SC transition. In a field
of 1 T (black dots) (B‖∆L) the FM transition broadens while superconductivity is
not resolved.
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Figure 6.4: Superconducting properties of polycrystalline UCoGe sample #3. (a)
ac-susceptibility χac(T ) (left axis) in B = 10−5 T and resistivity ρ(T ) (right axis).
Data taken by Dr. N. T. Huy. (b) Specific heat divided by temperature c/T as a
function of T . Bulk SC occurs below T onset

sc ∼ 0.66 K, i.e. the temperature at which
the resistivity is zero (dotted vertical line). (c) Thermal expansion coefficient in zero
field and in B=1 T. In zero field bulk SC is observed below T onset

sc ≈ 0.66 K. The
dashed-dotted lines show the ideal transitions, located at Tsc=0.45 K. In a field B=1
T applied along the dilatation direction ∆L, superconductivity is suppressed down to
the lowest temperature.
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a value comparable with those obtained on the heavy fermion superconduc-
tors URu2Si2 [157] and UPt3 [158, 159]. In a magnetic field B=1 T the SC
transition is no longer resolved.

6.2.1 Discussion
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Figure 6.5: Relative length change ∆L/L as a function of temperature. The dotted
lines are extrapolations based on fits of ∆L/L ∝ T 2 in the paramagnetic (PM) and
FM states.

The relative length change ∆L/L = (L(T ) − L(0.23 K))/L is calculated
by integrating α(T ) starting at the lowest measured temperature T = 0.23 K
(fig. 6.5). The lowest dotted line in the figure, obtained by a ∝ T 2 extrapo-
lation from the data above TC, indicates the ∆L/L in the absence of a FM
state, while the upper dotted line, obtained by quadratic extrapolation of
αFM to T = 0, indicates ∆L/L in the absence of a SC state. The total
length change associated with SC after correcting for the normal state linear
contribution (∆L/L ∼ −0.1 × 10−6) is small compared to the length change
∆L/L ∼ 1.9 × 10−6 due to magnetic ordering. This allows us to draw the
important conclusion that magnetism is not expelled below Tsc and that FM
coexists with SC.

The pressure variation of TC and Tsc of UCoGe can be estimated using the
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Ehrenfest relation for second-order phase transitions:

dTC,sc

dp
= VmTC,sc

∆βC,sc

∆cC,sc
(6.1)

where Vm = 3.13 × 10−5 m3/mol, and ∆βC,sc = 3∆αC,sc and ∆cC,sc are the
step sizes of α(T ) and c(T ) at the FM and SC transition, respectively. From
the estimated step sizes of α(T ) and c(T ) we calculate

dTC/dp = −0.79 K/kbar

dTsc/dp ∼ 0.062 K/kbar.

The calculated value of dTC/dp shows that the critical pressure at which mag-
netism is predicted to vanish is very low, pc ∼4 kbar, considering a linear
depression of TC with pressure. Interestingly Tsc increases with pressure. This
places UCoGe in the generic phase diagram of fig. 2.4 (left panel) on the far
side of the left SC lobe with respect to the critical point. Upon applying pres-
sure, the SC transition temperature of UCoGe is predicted to pass through a
maximum before vanishing at the magnetic QCP. Later studies on polycrystals
[41] and single crystals [42] under pressure showed a phase diagram different
from ref. [30], with, however, a TC,sc pressure dependence with the same sign
as predicted using the Ehrenfest relations.

The final and decisive proof that FM and SC in UCoGe are bulk properties
and coexist at the microscopic scale is obtained by µSR [92, 160] and NQR
[161] experiments. Notably, zero field (ZF) muon spin rotation data provide
unambiguous proof that FM is present in the whole sample volume. Further-
more, the persistence of the spontaneous muon precession signal with the same
amplitude below Tsc provides solid evidence for the coexistence of FM and SC
[92, 160].

6.3 Characterization of UCoGe single crystals

The SC transition temperature of UCoGe is strongly defect sensitive [29].
This sensitivity is due to pair-breaking occurring not only for magnetic impu-
rities, as in conventional SC, but also for non-magnetic impurities and defects.
Together with the proximity to a ferromagnetic instability and the absence of
Pauli limiting, the non-magnetic defect sensitivity yields evidence of uncon-
ventional superconductivity. Examples of the sensitivity of Tsc to the residual
resistivity are already reported in the literature, for instance in the case of the
ferromagnetic superconductor URhGe [26, 162] and the p-wave superconduc-
tor Sr2RuO4 [163, 164]. It is therefore crucial to utilize high-quality samples
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to investigate the special properties of UCoGe. The first high-quality single
crystal of UCoGe was prepared by Dr. Y. K. Huang at the WZI [165]. This
allowed to determine the anisotropy in the magnetization: UCoGe is a uniax-
ial FM with the ordered moment m0 pointing along the orthorhombic c-axis.
The crystal was subsequently used for a study of the anisotropy of the upper
critical field Bc2 providing evidence that the SC gap function is unconventional
and has point nodes along the direction of m0 [39]. In the course of this thesis
work, several other single crystalline samples of UCoGe have been prepared
with the main aim to obtain a large single crystal (typically 5 × 5 × 5 mm3)
for thermal expansion measurements. Especially, much work was devoted to
investigate the effect of different annealing procedures on the SC and FM
properties.

Figure 6.6: X-ray Laue picture (top) of as-grown single crystalline UCoGe (bottom).
Picture taken from ref. [92].

Polycrystalline samples were prepared as starting material by arc melting
following the procedure outlined in chap. 3. These sample were prepared from
high purity constituents (natural or depleted U 3N, Co 3N and Ge 5N) with
nominal composition U1.01Co1.02Ge. The small excess of U is to compensate
for the loss due to oxidation during the sample preparation process, while
excess Co was used to prevent the formation of the secondary phases revealed
by EPMA. Subsequently, single crystalline samples were grown by Dr. Y. K.
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Huang using the Czochralski technique. The single crystallinity was checked
by Laue back-scattering (see for an example fig. 6.6). The same technique was
used to orient the crystals. The single crystalline samples were cut by spark
erosion and the surfaces of several pieces were polished before being annealed.
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Figure 6.7: Resistivity of polycrystalline UCoGe samples taken from the same batch.
The samples were heat-treated for 10 days at 1050 ◦C (upper frame), 950 ◦C (middle
frame) and 850 ◦C (lower frame). Note the different vertical scales. The arrows
mark the ferromagnetic transition at TC while the vertical dotted lines mark the
superconducting transition at Tsc. The dotted lines represent a linear extrapolation
of the resistance in the PM region to below TC. The data were taken by E. Slooten.

Different annealing procedures were used for different pieces of the single
crystals, labelled sc#1, sc#2 and sc#4, as reported in tab. 6.1. The first heat
treatment procedures carried out [165] were copied from the one applied to
URhGe [162, 166, 167]. Here, a one day anneal at 1250 ◦C was aimed at
releasing eventual excess Ge, as Ge has a much larger vapour pressure at this
temperature than the other two elements. The subsequent three-week anneal
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is meant to homogenize the material. In addition we performed several anneal-
ing procedures without the one day anneal at 1250 ◦C. The last two annealing
procedures were carried out for three weeks at 950 ◦C. This temperature was
chosen because it gave the best results on a test on polycrystalline samples.
These polycrystalline pieces taken from the same batch were annealed for 10
days at 850 ◦C, 950 ◦C and 1050 ◦C respectively. Their resistance was mea-
sured (fig. 6.7). The highest value of the residual resistance ratio, RRR=8.5,
is reported for the piece annealed at 950 ◦C. Moreover this sample presents the
highest superconducting transition temperature Tsc = 530 mK with a broad
(∆Tsc = 350 mK) but complete transition. The transition temperature is in
agreement with previous measurements on polycrystalline samples with sim-
ilar RRR [92] although the width of the transition is double the size. The
ferromagnetic transition is observed at TC = 3 K with a clear hump.
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Figure 6.8: Resistivity of UCoGe sc#1b ann#1, with I‖b and B‖c. The applied
magnetic fields are B=0, 0.02, 0.05, 0.1, and 0.15 T. Inset: Resistivity of UCoGe
sc#1b ann#1 in zero applied field. The FM and SC transition temperatures are
marked as TC and Tsc respectively. The solid lines are fits to the data in the PM
(∼ T 5/3) and in the FM (∼ T 2) region. The residual resistivity is ρ0 ∼ 7 µΩ cm and
RRR = 40.

As representatives of the results reported in tab. 6.1, we show two extreme
cases. An example of a successful annealing [165] is reported in fig. 6.8 for a
sample with RRR=40. In sc#1 ann#1 (I‖b, later on called sc#1b ann#1),



6.3 Characterization of UCoGe single crystals 107

0 2 4 6
5

1 0

1 5

2

3

4

2 . 7

4 . 6

 

 R 
(m

Ω
)

T  ( K )

   U C o G e  
s c # 2  a n n # 1

R R R = 1 . 2

I  | |  a

I  | |  b
I  | |  c

 

 

Figure 6.9: Resistance of UCoGe sc#2 ann#1 for a current along the three crys-
tallographic axes, as indicated. Note the different vertical scale for the data with
I‖b.

both the FM and the SC transitions are clearly present at TC = 2.8 K and
Tsc ∼ 0.5 K. The transitions are subsequently depressed in a small magnetic
field B‖c (in agreement with the data reported in ref. [39] on sc#1 ann#1 with
I‖a, subsequently referred as sc#1a ann#1). An example of a non satisfactory
annealing is reported in fig. 6.9, where we show the resistance of UCoGe sc#2
ann#1 cut along the three crystallographic axes. The residual resistance ratio
is different for every sample and almost no improvement of the RRR compared
to the as-cast crystal is found. Signatures of the FM and SC transitions are
present, but none of them is sharp or complete.

For the two examples reported here, the annealing procedures were the same,
but for sc#2 a new furnace was used. The unsatisfactory result suggested that
an oven calibration was necessary to reproduce the result obtained on UCoGe
sc#1 ann#1. We therefore proceeded with a temperature calibration of the
furnaces. The annealing procedures on UCoGe sc#4 (see tab. 6.1) and sc#5
(data not reported) subsequently showed some improvement of the RRR with
a best RRR = 12, but we still are not able to reproduce the results for sc#1
ann#1.

The results of the different annealing procedures are summarized in fig. 6.10
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by plotting the residual resistance ratio RRR (as an estimate of the purity of
the sample) as a function of the annealing temperature. From the plot it
is evident that the annealing procedure improves the quality of the sample.
Unfortunately the best RRR=12 for sc#4 ann#2 is considerably smaller than
the values obtained for UCoGe sc#1 ann#1. For this crystal the residual
resistance ratio RRR=30-40 (see inset in fig. 6.10).
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Figure 6.10: Residual resistance ratio RRR of several single crystalline samples of
UCoGe as a function of the annealing temperature Tann. Inset: same plot in a wider
vertical scale.

In fig. 6.11 we trace the superconducting transition temperature for differ-
ent crystals as a function of the residual resistance ratio. The plot represents
the influence of non-magnetic impurities (represented by the RRR) on super-
conductivity. The effect of non-magnetic impurities is theoretically described
in ref. [168], following the theory proposed by Abrikosov and Gor’kov for
magnetic impurities on conventional superconductors [169, 170]. It was shown
that Tsc is inversely proportional to ρ0 [171], as sketched in the plot (since
RRR ∼ 1/ρ0). Furthermore, it is clear from the plot that improving the qual-
ity of the sample will not increase Tsc further than ∼0.6 K. Nevertheless the
width of the transition (given by the error bar) does become smaller for higher
RRR.

Finally, we notice that EPMA data taken on sc#1c ann#1 (RRR=30),
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Figure 6.11: Superconduction transition temperature of several single crystalline
UCoGe samples as a function of the residual resistance ratio. The line is a guide
to the eye for the relation between Tsc and RRR.

sc#2 as-cast (RRR=5) and sc#2 ann#1 (RRR=4.6) detected no differences
in composition within the instrumental resolution (1%). For all the three
samples the EPMA results revealed a homogeneous matrix with composition
1:1:1 and no secondary phases.

6.3.1 Resistivity at high magnetic field

The superconducting ferromagnet URhGe shows an unusual re-entrant su-
perconducting phase for a magnetic field applied along the b axis [133]. Since
the magnetic and superconducting properties of URhGe and UCoGe presents
similarities, it is of interest to search for a similar field re-entrant SC state in
UCoGe. To this purpose, high magnetic field experiments were carried out in
a dilution refrigerator at the HFML in Nijmegen. The resistance of UCoGe
sc#1a ann#1 (bar cut along the a axis, RRR = 30) was measured at several
fixed low temperatures and in large magnetic fields up to 30 T.

The results are reported in figs. 6.12 and 6.13. For B‖I‖a, field sweeps up
to 30 T and back to zero field were made at T=60, 180 and 300 mK. For I‖a
and B‖b, sweeps were made at T=110, 200 and 300 mK. No sign of re-entrant
superconductivity is observed up to 30 T. Very recently, however, Aoki and
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Figure 6.12: Resistance of UCoGe sc#1a ann#1 as a function of the magnetic field
B, with B‖I‖a. The field sweeps are made at 60 mK, 180 mK, and 300 mK.
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Figure 6.13: Resistance of UCoGe sc#1a ann#1 as a function of the magnetic field
B, with I‖a and B‖b. The field sweeps are made at 110 mK, 200 mK, and 300 mK.
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collaborators performed a careful study of the angular dependence of Bc2 on a
high quality sample (RRR = 30) of UCoGe [172]. They obtained a remarkable
result. For B‖b, Bc2 shows an unusual S-shape, implying field-reinforced SC
in the field range 12-14 T. A small mis-orientation of a few degrees largely
washes out this phenomenon. Although the sample we used for the experiment
in Nijmegen was carefully oriented within 1-2 degrees, possibly an additional
orientation error in mounting the sample in the dilution refrigerator hampered
the observation of the field-reinforced superconductivity.

6.4 Thermal properties of single crystalline UCoGe in
zero field
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Figure 6.14: Coefficient of linear thermal expansion of UCoGe sc#1 ann#1 along the
a, b and c crystallographic axes, as indicated. The arrows indicate TC and Tsc, as
extracted from β(T ) (see text).

In this section we present thermal expansion measurements on UCoGe single
crystals in zero field. Ideally, for the dilatometer, samples with a typical size
of ∼ 5× 5× 5 mm3 are required. However, even after preparing several single
crystals and applying different heat treatments (see previous section 6.3), large
crystal with acceptable RRR values were not yet available. We therefore
decided to measure the coefficient of linear thermal expansion on two bar
shaped samples with dimensions ∼ 1× 1× 4 mm3 that we previously used for
transport measurements. These samples are labelled UCoGe sc#1a ann#1
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Figure 6.15: Coefficient of linear thermal expansion of UCoGe sc#1 ann#1 at low
temperatures along the a, b and c crystallographic axes, as indicated. The arrows
indicate TC and Tsc, as extracted from β(T ) (see text).

and sc#1b ann#1, where the character stands for crystallographic axis along
the long direction of the bar. These samples are of high quality as evidenced
by the RRR values of 30 and 40 respectively. On the b axis sample αa was
measured, while on the a axis sample αb and αc were measured. In this way
the data were taken on small samples with a typical thickness of ∼ 1 mm. No
further heat treatment, spark erosion or polishing process was made on the
samples after the transport measurements were carried out.

The thermal expansion data were taken in the Heliox system (0.23 K < T <
14 K) and in the Kelvinox system (0.06 K < T < 1 K). The measurements
taken in different cryostats are in good agreement with each other. The data
in zero field are plotted in figs. 6.14 (up to 11 K) and 6.15 (up to 4 K).
They reveal a strong anisotropy. In the paramagnetic phase αa and αb are
positive, while αc is negative. The most pronounced variation is observed
along the b axis. For this direction, FM yields a negative and SC a positive
contribution to α. For the a and c axis the contributions are smaller and
the polarity is reversed. At the FM and SC phase transitions, large step-like
changes, ∆α, are found. The large values of ∆α at TC and Tsc provide solid
evidence that FM and SC are bulk properties. Notice, the step-sizes at Tsc are
comparable to the ones obtained for the heavy-fermion SCs URu2Si2 [157] and
UPt3 [159]. For T < Tsc, αi drops to zero for all the axes. The scatter of the
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Figure 6.16: Coefficient of volume thermal expansion of single crystalline UCoGe
sc#1 ann#1 as a function of temperature. The dashed lines represent idealized sharp
FM and SC transitions, at TC = 2.6 K and Tsc = 0.42 K, respectively. The star marks
an additional contribution before the SC transition. Inset: Comparison of β(T ) of
single-crystalline (closed circles) and polycrystalline (solid line) UCoGe. The dashed
line gives βpara(T ) = aT (see text).

data prevents a proper determination of the power law function of α(T ) ∝ Tn

for T → 0. Such a power law behaviour is expected for an unconventional
superconductor (∼ T 2 is expected for line nodes in the gap function and ∼ T 3

for point nodes [173]). Nevertheless, we can observe that the temperature
dependence is stronger than exponential (expected for an isotropically gapped
BSC superconductor [174]).

The overall behaviour of UCoGe is determined by the coefficient of volume
thermal expansion β(T ) =

∑
i αi where i = a, b, c. Ideally the αi(T ) curves

should be measured on one single sample, however, in our case we used two
samples with slightly different RRR-values. The resulting β(T ) is presented
in fig. 6.16. The data show a large negative step at TC and a positive step at
Tsc. Since the phase transitions are relatively broad in temperature, we use an
equal volume construction [142] to obtain idealized sharp transitions. In this
way we extract T bulk

C = 2.6 K and T bulk
sc = 0.42 K. In the inset to fig. 6.16 we

compare β(T ) of the single crystal with previous results on a polycrystal [29],
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where we assume β = 3α. The data show a nice overall agreement, but,
obviously, the phase transitions are much sharper for the single crystal.

A closer inspection of the volume thermal expansion reveals an additional
contribution is present below ∼ 1.5 K in the FM phase, just before supercon-
ductivity sets in (star symbol in fig. 6.16). This shoulder-like feature indicates
the presence of a second energy scale. A similar feature was reported for other
SCFMs. It was observed in the specific heat of a polycrystalline sample of
URhGe [38], in specific heat [140] and thermal expansion [134] of single crys-
talline samples of URhGe. At ambient pressure it was observed in specific
heat [25] and thermal expansion [175] of UGe2 and in thermal expansion of
UIr [135]. This feature could possibly be related to an enhancement of the
spin fluctuations. It will be highly interesting to investigate whether these
enhanced spin fluctuations actually provide the pairing interaction for super-
conductivity.

Specific heat, c(T ), data around the SC transition are reported in
fig. 6.17(b). The phase transition for sc#1b ann#1 is broad, with ∆Tsc ∼
0.2 K. An estimate for the step-size ∆(c/Tsc) can be deduced using an equal
entropy method (dashed line in fig. 6.17(b)), which yields an idealized transi-
tion at Tsc = 0.35 K and ∆(c/Tsc)/γN ≈ 0.7, where γN = 0.062 J/mol K2 is the
Sommerfeld coefficient. This value is considerably smaller than the BCS value
1.43 for a conventional SC. On the other hand, a smooth extrapolation of c/T
versus T to 0 K indicates the presence of a residual term γ0 = 0.04 J/mol K2.
Since orthorhombic SCFMs are in principle two-band SCs [78], with equal
spin-pairing triplet states | ↑↑〉 and | ↓↓〉 in the spin-up and spin-down bands,
respectively, a finite γ0-value could be taken as evidence that only one band
superconducts [176], in which case γ0 = γN/2. However, in our case the broad
transition and finite γ0-value strongly suggest sample quality is an issue. The
low value ∆(c/Tsc)/γN and finite γ0 term remind one of the early specific-heat
data on single crystals of the heavy-fermion SC UPt3 [177]. Upon improving
the sample quality the transition became more and more sharp, and eventually
a split transition appeared, as well as a much reduced γ0 value [178].

In fig. 6.17 we compare c/T (T ) (b) with resistivity, ρ(T ) (c), data taken
on the same sample sc#1b ann#1, and αb(T ) (a) measured on sc#1a ann#1.
The zero resistance state is reached at 0.5 K, which corresponds to the onset
temperature T onset

sc for bulk SC. Using idealized constructions for the SC phase
transition in c/T (fig. 6.17(b)) and αb (fig. 6.17(a)) we obtain T bulk

sc is 0.35 K
and 0.42 K, for sc#1b ann#1 and sc#1a ann#1 respectively.
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Figure 6.17: (a) αb(T ) of UCoGe (sc#1a ann#1). (b) Specific heat of UCoGe (sc#1b
ann#1) in a plot of c/T versus T . (c) Resistivity versus T of UCoGe (sc#1a ann#1).
The vertical dotted line indicates the onset temperature of bulk SC. The dashed lines
in (a) and (b) represent idealized sharp FM and SC transitions. The specific heat
data are taken by J. Hartbaum (University of Karlsruhe).
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6.4.1 Discussion

In the inset of fig. 6.16, β(T ) up to 15 K is shown. Surprisingly β(T )
shows a linear behaviour for 5 K < T < 15 K with βPM(T ) = (4.4 ± 1.0) ×
10−7 T . This shows that the phonon contribution to the thermal expansion is
small compared to the linear electronic contribution for T < 15 K. Using the
coefficient β̃ = 0.54×10−3 J/mol K4 [29, 92] of the T 3 phonon contribution in
the specific heat of the polycrystalline sample (see fig. 6.3) we can estimate the
corresponding b value in the thermal expansion under the assumption Γph = 2.
We obtain

b =
κT

Vm
Γβ̃ = 0.3× 10−9K−4

where Vm = 3.13 × 10−5 m3/mol and κT ∼ 1 Mbar−1 is an estimate of the
compressibility. This value of b indicates that for T < 15 K the phonon
contribution is indeed small compared to the electronic contribution.

As was done previously with the polycrystalline sample of UCoGe, we cal-
culate here the relative volume change ∆V/V = (V (T ) − V (0.05 K))/V of
the sample as a function of the temperature. This is calculated by integrat-
ing β(T ) from the lowest temperature. The result (in fig. 6.18) is in good
agreement with that from the polycrystalline sample, where however the ef-
fect was much broader because of the polycrystalline nature of the sample.
The relative volume change due to the spontaneous magnetostriction amounts
to ∆V/V = 4.2 × 10−6 for T → 0 and is much larger (and has an opposite
sign) than the estimated ∆V/V = −2.5× 10−7 due to SC (see inset fig. 6.18).
The latter value is due to the condensation energy of the SC state and agrees
well with similar values obtained for heavy-fermion superconductors [157, 159].
Thus FM order is not expelled below Tsc and coexists with superconductivity.

With the thermal expansion and specific heat data on single crystals, one
may extract the uniaxial pressure variation of Tsc and TC with help of the
Ehrenfest relation for second-order phase transitions

dT

dpi
=
Vm∆αi

∆(c/T )

where the index i refers to the orthorhombic a, b or c axis, ∆αi is the thermal
expansion step along a certain axis i and Vm is the molar volume. The values
of ∆αi are reported in table 6.2, for both the FM and the SC transition.
The values of ∆β for the FM and SC transition are derived from β(T ) and
listed in the same table. Since the specific heat for a single crystalline sample
for T > 1 K has not been measured yet, ∆(c/TC) = 14 mJ/mol K−2 from
the polycrystalline sample was used [29]. ∆(c/Tsc) = 38 mJ/mol K−2 of
UCoGe sc#1b ann#1 as reported in fig. 6.17 is used. Since not all steps
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Figure 6.18: The relative volume change ∆V/V = (V (T )−V (0.05K))/V as a function
of T (solid line). The black dashed line gives ∆V/V in the absence of FM order. The
gray dashed line gives a smooth extrapolation of ∆V/V in the absence of SC. Inset:
Blow-up of the low-T part.

∆αi and ∆(c/Ts,C) have been measured on the same sample, we here restrict
ourselves to a qualitative analysis. The largest effect is calculated for pb,
uniaxial pressure along the b axis: Tsc increases and TC decreases. For pa and
pc the effect is smaller with reversed polarity. An estimate of the variation of
Tsc as a function of hydrostatic pressure can be calculated using the relation:
dTsc/dp = Vm∆β/∆(c/Tsc). By combining the results obtained on the two
crystals, using the values ∆β = 1.19× 10−6 K−1 (see fig. 6.14) and ∆c/Tsc =
0.038 J/molK2 (fig. 6.15), we calculate dTsc/dp = 0.098 K/kbar. This value is
larger than the value deduced for a polycrystal 0.062 K/kbar [29, 179] reported
in sec. 6.2. In the same way we calculate dTC/dp = −0.79 K/kbar, where we
used ∆β = −3.53 × 10−6 K−1 (fig. 6.14) and the polycrystal value ∆c/TC

reported above. Notice the pressure variations deduced for the single crystal
by the Ehrenfest relation are considerably larger than the experimental values
dTsc/dp = 0.03 K/kbar and dTC/dp ∼ −0.21 K/kbar [41, 42], which tells us
the quantitative analysis should be interpreted with care.
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Figure 6.19: Coefficient of linear thermal expansion of UCoGe sc#1 ann#1 in applied
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FM ∆α (10−6K−1) dT/dp (K/kbar)
a 0.4 0.1
b -6.7 -1.5
c 2.8 0.6

volume -3.5 -0.8

SC ∆α (10−6K−1) dT/dp (K/kbar)
a -0.4 -0.03
b 2.4 0.17
c -0.8 -0.06

volume 1.2 0.08

Table 6.2: Pressure dependencies of TC and Tsc in UCoGe. The values are deter-
mined using the Ehrenfest relation with ∆αi from UCoGe sc#1 ann#1. ∆(c/T )FM =
14 mJ/mol K−2 is determined from the polycrystalline sample #3 while ∆(c/T )SC =
38 mJ/mol K−2 from the single crystalline sample sc#1b ann#1.

6.5 Thermal expansion of single crystalline UCoGe in
field

The thermal expansion of single crystalline UCoGe was measured in mag-
netic field, in order to study the field dependence of FM and SC. We report
measurements of αi(T ) along each orthorhombic axis in field applied parallel to
the elongation direction B‖∆L‖i, with i = a, b, c. Notice that, in the following
and if not otherwise stated, ∆αi refers to the step height of the FM transition.
The data are shown in fig. 6.19 in the temperature range 0.23 K < T < 10 K.
The coefficient of linear thermal expansion of UCoGe behaves in a peculiar
and irregular way in field. Again we observe a large anisotropy, as in the zero
field data. In αc (B‖m0) the FM transition is peaked in zero field (fig. 6.19,
lower panel). The effect of the magnetic field, as expected, is to smear out
the transition rapidly: in a field of 1 T αc(T ) is virtually temperature inde-
pendent up to 10 K and close to zero. The same behaviour is observed for
the SC transition, where Tsc is depressed and the SC transition in the ther-
mal expansion is smeared out. For B‖a (fig. 6.19, upper panel), the positive
and small FM contribution to αa in zero field becomes negative for B > 1 T
increasing of ∼ 100 times at B = 6 T with respect to the absolute value of
∆αa in zero field. The SC transition temperature is depressed in field. For
B > 0.3 T the SC transition is difficult to track because of the scatter in the
data. Also the case of αb (fig. 6.19, middle panel) is interesting. In zero field
∆αb < 0. By applying a magnetic field B‖b, the magnetic transition temper-
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ature slightly increases and ∆αb remains negative attaining the large values
of ∼ −2× 10−5 K−1 at TC in a field of 8 T.

6.5.1 Discussion

The magnetic field has a strong, anisotropic effect on the thermal expansion
of UCoGe which is in keeping with its uniaxial ferromagnet nature. For B‖c,
i.e. along the direction of the magnetic moment m0, the magnetic transition
as measured by αc(T ) smears out rapidly and in field TC cannot be defined
anymore, but rather becomes a cross-over temperature T ∗. For B ⊥ m0,
the magnetic transition as measured by αa(T ) for B‖a and αb(T ) for B‖b
becomes more pronounced. The magnetic transition broadens considerably,
notably in αb(T ), but the step sizes |∆αa(B)| and |∆αb(B)| increase rapidly
with field as shown in the inset of fig. 6.20. This indicates the nature of
the ferromagnetic transition becomes first-order-like in a magnetic field, in
agreement with the phase diagram for an itinerant quantum critical point
with the magnetic field playing the role of pressure [176]. The analysis of the
Landau free energy of a uniaxial ferromagnet in a magnetic field predicts TC

is reduced in a transverse field B ⊥ m0 [79]. For instance, the Curie point of
the quantum Ising ferromagnet LiHoF4 (TC = 1.53 K) is depressed in a field
applied perpendicular to the Ising axis and TC → 0 at a critical field Bc ∼ 0.5 T
[180]. The field variation of TC of UCoGe for B‖a and B‖b is plotted using
filled symbols in fig. 6.20. Here the Curie temperature is identified by the
minimum in αa,b(T ) in field. For B‖a TC shows an small initial increase and
then remains constant up to the highest field B = 6 T, whereas for B‖a
TC shows an overall small increase. Clearly, fields exceeding 8 T are needed
to depress TC. The weak increase of TC can be attributed to a small mis-
orientation (∼ 2− 3 degrees) of the field with respect to the crystallographic
axes. If B is not exactly oriented perpendicular to m0, the ferromagnetic
transition becomes a cross-over due to the presence of a component of the
magnetic field parallel to m0 [77]. Recently, Aoki and collaborators [172]
demonstrated the importance of a precise alignment of the magnetic field with
respect to the crystal axes by carrying out an angular magnetotransport study
on UCoGe. For B‖b these authors report TC remains constant in fields up to
∼ 8 T and the is gradually depressed to vanish at a critical field Bc ∼ 15 T.

In fig. 6.20 we have also traced the variation of the superconducting tran-
sition temperature as a function of the magnetic field B‖b as deduced from
the thermal expansion. Tsc(B) determined in this way is systematically lower
than the values determined by resistivity measurements in field on the same
sample (solid line in fig. 6.20) [39]. This is expected as thermal expansion is a
bulk probe and bulk superconductivity sets in when the resistive transition is



6.5 Thermal expansion of single crystalline UCoGe in field 121

0

2

4

6

8

0 2 4 6 8
- 3
- 2
- 1
0

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00

2

4

6

8

0 2 4 6 8
- 2

- 1

0

 

 

B (
T)

U C o G e
s c # 1  a n n # 1B | | �L | | b

 B  ( T )

 
��

 (1
0-5  K-1 )

 

 

B (
T)

T  ( K )

 B  ( T )

 

 

��
 (1

0-5  K-1 )

B | | � L | | a
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complete (see fig. 6.4 or ref. [29]). Huy et al. [29] reported an overall unusual
upward curvature and a change of slope (B‖b) or kink (B‖a) in the upper
critical field Bc2 near 1.5 T (solid lines in fig. 6.20). The feature near 1.5 T
was tentatively attributed to a change of population of the equal spin pair-
ing states | ↑↑〉 and | ↓↓〉 [39]. Interestingly, TC(B) shows a change of slope
near 1.5 T (notably in B‖b) as well. At the moment it is not clear whether
both phenomena are connected. As mentioned above, recent work by Aoki
and co-workers [172] pointed out that the normal and superconducting state
properties depend sensitively on the orientation of the magnetic field. Clearly,
this should be considered when interpreting the data reported in fig. 6.20.

6.6 Summary

In this chapter we reported thermal expansion measurements on polycrys-
talline UCoGe samples which, together with specific heat, provided the first
evidence for the coexistence of FM and SC in the bulk of the samples. High-
temperature thermal expansion revealed the formation of a Kondo lattice state
for temperatures below T ∼ 80 K. FM and SC transitions appear in both the
thermal expansion and the specific heat (figs. 6.3 and 6.4) at TC = 3 K and at
T bulk

sc = 0.45 K. The total length change associated with SC allowed to draw
the conclusion that magnetism is not expelled below Tsc and that FM coexists
with SC. The pressure variation of TC and Tsc, calculated by the Ehrenfest
relation, placed UCoGe on the far side of the left SC lobe with respect to the
critical point (fig. 2.4, left panel). A different phase diagram is obtained by
later studies on polycrystals [41] and single crystals [42] under pressure. How-
ever, the measured TC,sc pressure dependence was of the same sign as given
by the Ehrenfest relation.

Several single crystalline UCoGe batches have been characterized in order
to obtain a high quality single crystal for thermal studies (see table 6.1). The
influence of impurities and defects (represented by the RRR) on superconduc-
tivity [168] was presented in fig. 6.11. Improving the quality of the sample will
not further increase Tsc beyond ∼0.6 K, but the width of the transition can
be further reduced. The single crystalline samples with the highest RRR ob-
tained were two bars, labelled sc#1a ann#1 (RRR = 30) and sc#1b ann#1
(RRR = 40). Despite the high quality, these sample showed no sign of re-
entrant superconductivity for magnetic fields up to 30 T. According to the
results obtained in ref. [172], possibly a small error in the orientation ham-
pered the observation of the field-reinforced superconductivity.

The single crystalline UCoGe samples sc#1 ann#1 were used for thermal
expansion and specific heat measurements. The coefficient of linear thermal



6.6 Summary 123

expansion measured (fig. 6.14 and 6.15) is strongly anisotropic and FM and
SC appear in the form of large steps. The large values of ∆α at the transitions
provide evidence for bulk FM and SC in single crystalline UCoGe. The coef-
ficient of volume thermal expansion is presented in fig. 6.16. The data show
a large negative step at TC = 2.6 K and a positive step at T bulk

sc = 0.42 K. An
additional contribution is present below ∼ 1.5 K, just before superconductivity
sets in, as observed in other SCFMs [25, 92, 134, 135, 140]. This shoulder-like
feature indicates the presence of a second energy scale, most likely related to
an enhancement of spin fluctuations. The relative volume change due to the
spontaneous magnetostriction (fig. 6.18) is much larger and has an opposite
sign than the estimated ∆V/V due to SC. Specific heat, thermal expansion
and resistivity are reported in fig. 6.17 around Tsc. A residual term γ0 is ob-
served when c/T is extrapolated to 0 K. The broad superconducting transition
and finite γ0-value strongly suggest sample quality is an issue here. A qual-
itative analysis using the Ehrenfest relation shows that for pressures applied
along the b axis Tsc increases while TC decreases, and vice-versa for pressures
along the a and c axes.

Thermal expansion in field (B‖∆L) was measured on UCoGe sc#1 ann#1
and reported in figs. 6.19. The response of α to field is very anisotropic. While
B‖c suppresses the FM (and SC) transition, B‖a, b enhances it. The large
length changes show the nature of the FM transition becomes first-order-like
in an applied magnetic field. Notably for B‖a, b a change of slope in TC(B) is
observed at B = 1.5 T. A similar result was reported for Tsc(B) [39].
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[136] V. Sechovský and L. Havela, in Handbook of Magnetic Materials, vol 11,
pp. 1-289, edited by K. H. J. Buschow (Elsevier, North Holland, 1998).

[137] R. Troc̀ and V. H. Tran, J. Magn. Magn. Mat. 73, 389 (1988).
[138] C. Pfleiderer, S. R. Julian, and G. G. Lonzarich, Nature 414, 427 (2001).
[139] S. Sakarya, Ph.D. thesis, Delft University of Technology, 2007, unpub-

lished.
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Klaasse, E. Brück, V. Sechovský, and F. R. de Boer, Physica B 281,
223 (2000).

[142] An equal volume for the broadened and idealized contributions is im-
posed when integrating α(T ) or β(T ) with respect to the background
signal.

[143] Hercules (different authors), in Neutron and Synchrotron Radiation for
Condensed Matter Studies, edited by J. Baruchel J.L. Hodeau M.S.
Lehmann J.R. Regnard C. Schlenker (Les Edition de Physique and
Springer-Verlag, Berlin, 1994).

[144] H. Duijn, Ph.D. thesis, University of Amsterdam, 2000, unpublished.
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Summary

The Grüneisen parameter has been shown to be a powerful detection tool
for quantum criticality, shortly after Zhu et al. [23] predicted its divergence
Γ(T ) ∝ T−νz at every QCP. The temperature exponent νz of the diverging
Γ provides important information regarding the type of quantum criticality,
giving the product of ν, the critical exponent of the correlation length, and
z, the critical exponent of the correlation time. Therefore the goal of this
thesis was to focus on different types of QCPs, such as FM and AFM QCPs.
Moreover, the discovery of superconductivity coexisting with ferromagnetism
in UCoGe [29] and the evidence of FM QCPs in systems with Si-doping [40]
or under pressure [42] gave the possibility to study other FM QCPs with the
help of the Grüneisen ratio. Here we reported the thermal properties of pure
UCoGe at ambient pressure, which presented the first evidence of bulk SC and
FM.

In chapter 3 different experimental techniques are presented. In particu-
lar the dilatometry technique is implemented over a wide temperature range
(30 mK -150 K) for two different cells. Cell-1 was calibrated to be used in
the Heliox and Kelvinox systems (30 mK-20 K) and cell-2 for the glass-dewar
system (2-150 K). At very low temperatures (T < 100 mK) a minimum in the
calibration function is found. Its origin is still unclear, but it is possibly related
to a two level Schottky system. Experiments carried out in field corroborated
this hypothesis.

Chapter 4 is devoted to the AFM QCP in Ce(Ru0.24Fe0.76)2Ge2. The sin-
gle crystalline sample is shown to have a Fe-concentration x ∼ 0.75, which
is lower than the nominal one, and TN ∼ 1.2 K, therefore AFM order is
still present in the sample. The AFM was suppressed by applying a small
magnetic field. From magnetostriction and magnetoresistance measurements,
we consider Bc ∼ 0.8 T. The resistivity exponent n from the data fitted by
ρ(T ) = ρ0 + aTn showed a minimum n = 1.3 at B ∼ Bc. The result is lower
than the one predicted for a SDW AFM QCP, which is n=3/2, possibly due
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to crystallographic disorder.
Thermal expansion and specific heat were studied in several applied mag-

netic fields and the Grüneisen ratio was calculated. The thermal expansion
data fitted by a power law function β = aTn present a minimum n = 1 for
B ∼ Bc. For the specific heat divided by the temperature c/T at T = 0.5 K we
reported the highest value γ = 0.83 J/mol K2 for B ∼ Bc. Both parameters
deviate from the prediction for a SDW AFM QCP. At the critical field, the
Grüneisen ratio reaches high values at low temperatures (Γmag = 50 at 0.5 K).
Nevertheless the specific heat and the thermal expansion at B ∼ Bc are not
compatible with the prediction for a SDW AFM QCP and Γ does not diverge.
This was not unexpected since (i) the system presents competing local and
long-range fluctuations at the QCP, (ii) the system is above the upper critical
dimension and (iii) if different Γ ratio’s do not couple due to the presence
of more than one energy scale, only Γmag is predicted to diverge when the
magnetic field is used as control parameter.

The thermal expansion and specific heat experiments on a FM SDW QCP
are reported in chapter 5. The thermal expansion data on the polycrystalline
U(Rh,Ru)Ge series (x = 0.10, 0.20 and xc = 0.38) are combined with spe-
cific heat data taken previously on the same samples in order to obtain the
Grüneisen ratio Γ towards the QCP. The transition temperatures obtained by
thermal expansion are in very good agreement with the ones of the previously
reported phase diagram. Although no diverging Γ is reported for x = 0.38, a
steady rise of the Grüneisen ratio is observed in the paramagnetic regime on
approach of the FM transition.

We then investigated the thermal properties of single crystalline samples
of URh0.62Ru0.38Ge. AC-susceptibity revealed that the samples under study
were still ferromagnetic and therefore the Ru-concentration was lower than
xcr. Moreover, a typical variation of 2% in the Rh/Ru ratio was observed
along the crystal pulling direction applied during the Czochralski growth. The
thermal expansion results of one URh0.62Ru0.38Ge sample (nominal critical
concentration) are compared with the specific heat data on the same sample.
In both data sets the FM transition is observed. The calculated Grüneisen
ratio presents a large plateau to drop at T ∼ 1 K due to FM. We showed that
this behaviour is not inconsistent with the theory proposed by ref. [23].

In chapter 6 we reported thermal expansion measurements on polycrys-
talline UCoGe, which provided the first evidence of coexistence of SC and FM
in the bulk of the sample. This was concluded since the steps at the transi-
tions were large and the total length associated to SC was small compared to
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the one associated to FM. High temperature thermal expansion revealed the
formation of a Kondo lattice state for T < 80 K. The FM and SC transition
temperatures, TC = 3 K and T bulk

sc = 0.45 K, are in good agreement with re-
sistivity and ac-susceptibility data and the SC transition in thermal expansion
and the specific heat appears when the resistivity drops to zero.

An annealing study of the single crystalline samples was performed in order
to improve their quality. The single crystals with the highest quality that were
previously obtained were two bar-shaped samples with RRR = 30 and 40.
From our study it is clear that the SC transition temperature will not increase
much further when increasing the RRR, but the width of the SC transition
can decrease with improving samples quality. The thermal expansion data
confirmed bulk FM and SC at TC = 2.6 K and T bulk

sc = 0.42 K. An additional
contribution is present below ∼ 1.5 K, just before superconductivity sets in, as
it was already observed in other SCFMs. This shoulder-like feature indicates
the presence of a second energy scale, most likely related to an enhancement
of the spin fluctuations. A qualitative analysis using the Ehrenfest relation
showed that Tsc increases while TC decreases when pressure is applied along
the b axis, and vice-versa for pressures applied along the a and c axes. Thermal
expansion on single crystalline UCoGe revealed a very anisotropic response to
magnetic field. For an external magnetic field B‖∆L, TC is suppressed in a
small magnetic field when B‖m0 while TC stays around the same value up to
a magnetic field of 8 T when B ⊥ m0. The step size considerably increased
when a field B ⊥ m0 was applied. It would be of high interest to use these
results in order to study the Grüneisen parameter in a field tuned QCP in
UCoGe.



136 Samenvatting

Samenvatting

In 2003 voorspelden Zhu et al. dat de Grüneisenparameter Γ(T ), de ex-
perimentele maat voor de verhouding van de coëfficient van de thermische
uitzetting, α(T ), en de soortelijke warmte, c(T ), divergeert bij elk kwantum
kritisch punt. De divergentie wordt gegeven door Γ(T ) ∝ T−νz, waarbij ν
de kritische exponent van de correlatielengte is en z van de correlatietijd.
Dit maakt de Grüneisenparameter een zeer krachtig instrument om kwan-
tum kritikaliteit te bestuderen. Het doel van dit proefschrift is dan ook om de
Grüneisenparameter te onderzoeken voor magnetische kwantum kritische pun-
ten, zowel voor een antiferromagnetische (AFM) als ferromagnetische (FM)
grondtoestand. Daarnaast gaf de ontdekking van coëxistentie van supergelei-
ding en ferromagnetisme in UCoGe, een systeem dat vlak bij een FM kwantum
kritisch punt is, aanleiding om de thermische eigenschappen van diverse pre-
paraten in detail te bestuderen.

In hoofdstuk 3 worden de gebruikte experimentele technieken beschreven.
Met name de techniek om thermische uitzetting te meten komt aan bod.
Om over een breed temperatuurgebied te meten zijn twee capacitieve uitzet-
tingscellen gebruikt. Cel-1 werd geijkt voor de Heliox en Kelvinox systemen
(T=0.03-20 K) en cel-2 voor gebruik in een glazen bad-cryostaat (T=2-150 K).
Bij zeer lage temperatuur (T < 0.1 K) werd een minimum in de cel-functie ge-
vonden. De exacte oorzaak hiervan is nog onduidelijk, maar de analyse duidt
op de aanwezigheid van een twee-niveau Schottky systeem. Metingen in een
extern magneetveld ondersteunen deze hypothese.

Hoofdstuk 4 beschrijft een experimentele studie aan het AFM kwantum
kritisch punt in Ce(Ru0.24Fe0.76)2Ge2. De experimenten uitgevoerd aan
éénkristallijne preparaten tonen aan dat de werkelijke concentratie Fe (geschat
op 75 at.%) een fractie lager is dan de nominale concentratie (76 at.%), waar-
door het preparaat nog AFM ordent met een Néel temperatuur TN ∼ 1.2 K.
De AFM ordening kan onderdrukt worden met behulp van een klein uitwen-
dig magneetveld. Het kritische veld, Bc ∼ 0.8 T, is bepaald door middel van
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magnetostrictie- en magnetoweerstandsmetingen. De temperatuurexponent n
in de electrische weerstand, ρ(T ) = ρ0+aTn, vertoont een minimum n=1.3 bij
B ∼ Bc. Deze waarde is kleiner dan n=1.5 voorspeld voor een itinerant (spin
density wave) AFM kwantum kritisch punt. Dit is toe te schrijven aan het feit
dat het preparaat een quasi-ternaire verbinding is met een hoge restweerstand
ρ0.

De volume thermische uitzettingscoefficient, β(T ), en soortelijke warmte
werden gemeten in verschillende magneetvelden en de Grüneisenparameter be-
paald. De thermische uitzettingsdata werden gefit aan een machtswet-functie
β = aTn, met een minimum n=1 voor B ∼ Bc. De lineaire coëfficient in de
soortelijke warmte heeft een maximum bij B ∼ Bc: c/T |0.5 K = 0.83 J/mol K2.
Beide parameters wijken af van de voorspellingen voor een itinerant AFM
kwantum kritisch punt. De Grüneisenparameter bereikt zeer hoge waarden
bij lage temperaturen (Γmag = 50 bij 0.5 K), maar divergeert niet. Dit is
niet onverwacht omdat: (i) neutronenverstrooiingsexperimenten tonen aan
dat het Ce(Ru,Fe)2Ge2 systeem met elkaar wedijverende lokale en lange-
afstandsfluctuaties vertoont bij het kwantum kritisch punt, (ii) het systeem is
boven de bovenste kritische dimensie, en (iii) de aanwezigheid van meer dan
één energieschaal kan er toe leiden dat de verschillende Γ parameters niet kop-
pelen; Γmag divergeert dan alleen wanneer het magneetveld wordt gebruikt als
tuning parameter.

Thermische uitzettingsmetingen aan een FM spin density wave kwantum
kritisch punt worden gepresenteerd in hoofdstuk 5. De thermische uitzet-
tingsdata van een reeks van polykristallijne URh1−xRuxGe preparaten (x =
0.10, 0.20 en xc = 0.38) worden gecombineerd met eerder verkregen soorte-
lijke warmte data, teneinde de Grüneisenparameter te berekenen. De geme-
ten magnetische overgangstemperaturen (Curie temperatuur, TC) komen zeer
goed overeen met het eerder gerapporteerde TC(x) fasediagram. Voor de kri-
tische concentratie, xc = 0.38, van het polykristallijne preparaat werd geen
divergerende Γ(T ) gevonden. Wel neemt de Grüneisenparameter gestaag toe
bij de nadering van de ferromagnetische overgang vanuit het paramagnetische
regime.

Vervolgens werden de thermische eigenschappen van diverse éénkristallen
met nominale samenstelling URh0.62Ru0.38Ge onderzocht. Susceptibiliteits-
metingen onthullen dat alle bestudeerde kristallen ferromagnetische ordening
vertonen en dat de werkelijke Ru-concentratie lager is dan xc = 0.38. Dit is
een gevolg van de variatie van de Rh/Ru verhouding van ongeveer 2% langs de
Czochralski groeirichting van het kristal. Thermische uitzettingsdata aan een
dergelijk URh0.62Ru0.38Ge éénkristal zijn vergeleken met de soortelijke warm-
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te data van hetzelfde preparaat. In beide datasets wordt de FM-overgang
waargenomen. De Grüneisenparameter vertoont een breed plateau bij lage
temperatuur en valt abrubt weg bij T ∼ 1 K vanwege de ferromagnetisch or-
dening. Dit gedrag kan de theorie van Zhu et al. niet bevestigen, maar is ook
niet in tegenstrijd daarmee.

Hoofdstuk 6 is gewijd aan de supergeleidende ferromagneet UCoGe. Diverse
experimenten zijn uitgevoerd aan poly- en éénkristallijne preparaten. Thermi-
sche uitzettingsmetingen aan polykristallijne preparaten UCoGe vormden het
eerste bewijs dat supergeleiding en ferromagnetisme daadwerkelijk coëxisteren
in de bulk van het preparaat. Deze conclusie kon worden getrokken aan de
hand van de grootte van de stappen in de thermische uitzettingscoëficient
bij de overgangstemperaturen. De ferromagnetische en supergeleidende over-
gangstemperaturen, TC = 3 K en T bulk

sc = 0.45 K komen goed overeen met
weerstands- en ac-susceptibiliteitsdata. Thermische uitzettingsmetingen bij
hoge temperatuur onthullen de formatie van een Kondo-rooster bij tempera-
turen T < 80 K.

Teneinde de kwaliteit van diverse éénkristallijne preparaten te verbeteren is
het effect van verschillende warmtebehandelingen (gloeien) bestudeerd. Eer-
der was aangetoond dat een warmtebehandeling van 1 dag bij 1250 ◦C en
21 dagen bij 880 ◦C resulteert in aanzienlijke toename van de kwaliteit en
een restweerstandsverhouding RRR =30-40. Echter, gelijksoortige warmte-
behandelingen aan nieuw gegroeide éénkristallen leidden niet tot de gewenste
hoge RRR waarden. Aan de kristallen met RRR =30-40 zijn thermische uit-
zettingsmetingen uitgevoerd. De data laten een sterke anisotropie in α(T )
zien, met de grootste lengteveranderingen voor de orthorhombische b as. De
grote waarden van de stappen in α(T ) bij T bulk

sc = 0.42 K en TC = 2.6 K
tonen bulk supergeleiding en magnetisme aan. Interessant is dat een extra
bijdrage in α(T ) vlak boven T bulk

sc werd gevonden. Deze bijdrage duidt op
de aanwezigheid van een tweede energie-schaal, die hoogst waarschijnlijk ver-
band houdt met een versterking van spin fluctuaties, zoals waargenomen in
de supergeleidende ferromagneten UGe2 en URhGe. Tot slot is het effect van
een longitudinaal magneetveld op α(T ) bestudeerd: de thermische uitzetting
neemt sterk toe, hetgeen duidt op een verandering van het karakter van de
magnetische faseovergang van tweede naar eerste orde in veld.
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L. Wang, U. Köhler, N. Leps, A. Kondrat, M. Nale, A. Gasparini, A. de
Visser, G. Behr, C. Hess, R. Klingeler and B. Büchner
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