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1. Introduction 

 
 

1.1 The classical Hall effect  
 
In 1879 Edwin Hall discovered that the application of a magnetic field B perpendicular to a 

thin conducting slab through which a current flows produces a voltage across the slab and 

perpendicular to the current (Fig.1). This voltage has been called the Hall voltage VH and 

the effect itself is called the Hall effect.  

 

Figure 1.1 Schematic representation of the classical Hall effect. 

 

So basically the Hall voltage is caused by the Lorentz force acting on the charges moving 

in the presence of a magnetic field. In equilibrium the Lorentz force |FL| = qvDB is balanced 

by the electric force qVH/Ly, where q is the carrier charge, vD is the drift velocity and Ly is 

the width of the sample. So VH = vDBLy exhibits a linear dependence on the magnetic field 

B. Writing the current I as the product of the drift velocity vD, the charge density nq and the 

cross-sectional area of the sample S = Lyd, we find the perpendicular resistivity RH = VH/I to 

be [1] 

                                                
Se

H qN
B

dqn
BR == ,                                                           (1.1) 
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d 

VH 
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where ne = nq/q is the number of carriers per unit volume and NS is the number of carriers 

per unit surface area. Because the Hall resistance RH only depends on the magnetic field B 

and the carrier density and not on other material parameters, the Hall effect has become a 

standard tool of material characterization. The direct proportionality of the Hall resistivity 

on the local magnetic field has allowed the development of scanning Hall probe 

microscopes which allow for instance a detailed determination of the magnetic field 

distribution near the vortices in type II superconductors [2]. The ordinary Hall effect can be 

fully explained by classical ideas about electron transport in metals, like the Drude model 

and the semi-classical theories elaborated in Refs. [3-5]. The fact that there is a quantum 

mechanical follow-up in the form of the quantum Hall effect which adds totally new 

dimensions to the study of low dimensional electronic systems, originally came as a 

complete surprise in physics as a whole. 

 

1.2 The quantum Hall effect 
 

The discovery of the ordinary Hall effect and advent of the quantum Hall effect (K. von 

Klitzing, 1980) are one century apart. The quantum Hall effect has already led to two 

Nobel prizes in physics, one for the integral quantum Hall effect [6] in 1985 and one for the 

fractional quantum Hall effect [7-9] in 1998. These robust quantum phenomena on a 

macroscopic scale Hall effect manifest themselves in the transport parameters of the two 

dimensional electron gas that are directly measurable, notably the longitudinal resistance 

(usually denoted by Rxx or R0) and the Hall resistance (usually denoted by Rxy or RH).  

Still to date, more than 25 years after the first discovery, our microscopic understanding of 

the quantum Hall effect is far from being complete. The quantum Hall effect is standard 

observed in strong perpendicular magnetic fields B and at low temperatures (T ≤  4 K) and 

it is well known that the phenomenon only exists because of the breaking of translational 

invariance by random impurities. Instead of the linear dependence of RH with varying 

magnetic field B, it now turns out that the Hall resistance is quantized in units of h/e2

                                                Ω≈= k
iie

hRH
8128.25

2
 .                                               (1.2) 

Here, i is an integer, h denotes Planck’s constant and e is the charge of the electron. It is 

now generally accepted that the transitions between adjacent quantum Hall plateaus are 

continuous quantum phase transitions that are characterized by a diverging length scale ξ 
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usually termed the localization length of the electrons near the Fermi energy. The 

longitudinal resistance R0 shows a peak at the transitions but it vanishes at the plateau 

values of RH. The quantization phenomenon is extraordinarily accurate (better than one part 

in 108 [10]). This precision led the International Committee for Weights and Measures 

(CIPM) to adopt the quantum Hall effect as the new standard for electrical resistance in 

1988.  
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Figure 1.2 Quantum Hall effect measured on a sample with Hall bar geometry (top 
left corner). The Hall voltage VH is measured between contacts 3 and 5 or 4 and 6. 
The longitudinal voltage VL is measured between contacts 3 and 4 or 5 and 6. Data 
taken on an InGaAs/GaAs quantum well with electron density ne= 2.7 × 1015 m-2 at T 
= 0.03 K). Figure taken from Ref. [11].  

 

Years later Stormer et al. [12] discovered that under very specific circumstances (very 

clean samples or high mobility) i can assume a series of fractional values. In this thesis we 

consider only the integer quantum Hall effect. To explain the quantization of the Hall 

resistance one usually thinks in terms of simple pictures that assume the effects of 

Anderson localization in strong magnetic fields. Most popular are Laughlin’s gauge 

argument [13], the semi-classical percolation picture [14], the Landauer-Buttiker edge 

states picture [15] and the heuristic ideas on Anderson localization by Aoki and Ando [16] 

that are based on Kubo formula [17]. 

One way to realize the two dimensional electron gas (2DEG) is by making use of MOS 

field effect transistors (MOSFETs). Another way is to use GaAs/AlGaAs heterostructures 

[18] or GaAs/InGaAs quantum wells [11]. In MOSFETs one can easily change the electron 

density by changing the gate voltage. This is also possible in III/V heterostructures and 
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quantum wells, but easier than building an additional gate is to control the electron density 

by illuminating the sample at low temperatures (if the Hall bar has the property of 

persistent photoconductivity).  

The breaking of translational invariance is due to ionized impurities or lattice impurities, 

both of which contribute to the disorder of the system. Anderson localization phenomena in 

perpendicular magnetic fields strongly depend on the range of the potential fluctuations. 

Short-ranged disorder gives rise to strong scattering between the electrons whereas long-

ranged disorder is usually associated with semi-classical pictures where open orbits 

(“edge” states) percolate throughout the system. What determines the type of disorder in 

quantum Hall samples is the range of the potential fluctuations relative to the magnetic 

length lB =√ (ћ/eB). It is well known that in order to experimentally observe the quantum 

critical behavior of the quantum Hall plateau transition, short-range potential fluctuations 

should be prevalent.  

 

1.3 Landau quantization 
 

A major ingredient for the quantum Hall effect is Landau quantization. In absence of a 

magnetic field the density of states N (E) (or DOS) of th e 2DEG is constant up to the 

Fermi level and given by [13] 

                                                
2
*)(
hπ

mEN =                                                                     (1.3)  

where m* is the effective carrier mass. The Fermi energy (EF) is given by 

                                                 
*m
hnE e

F
π= ,                                                                       (1.4) 

where ne is the 2DEG carrier density. Under influence of a magnetic field B directed 

perpendicular to the 2DEG the DOS splits up in a discrete set of Landau levels (LLs) per 

subband n with energies [19] 

                                                    BgmlE Bscsn µω *)
2
1(, ++= h ,                                (1.5) 

where l is an integer, ms is the spin quantum number, g* is the Landé-factor, µB is the Bohr 

magneton and ωc is the cyclotron frequency: 
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*m

eB
c =ω                                                                      (1.6) 

The second term in Eq. 1.5 accounts for the spin splitting. It follows from Eqs 1.5 and 1.6 

that the energy distance between the LLs is proportional to the applied magnetic field B. In 

order to observe the quantum Hall effect the energy splitting of the LLs should be much 

larger than the thermal broadening of a single LL, ħωc >> kBT, which requires typically the 

experiments to be carried out at liquid helium temperatures (T < 4 K). The number of 

occupied LLs, i.e. the number of LLs with En,s < EF is called the filling factorν. The filling 

factor ν  is related to the magnetic field 

                                                         
eB
hne=ν                                                                      (1.7) 

By increasing the magnetic field, the Landau levels are successively pushed to above EF, 

which gives rise – under quantum Hall conditions – to the plateau-plateau (PP) transitions 

(see Figure 2). When the Fermi level is located between two LLs RH attains a plateau value 

and R0 = 0. Ideally the quantum Hall transitions occur at filling factors (n + ½), where n = 

0, 1, 2 etc. These are called the critical filling factors (νc). In practice however νc may  

slightly deviate from the ideal values due to a finite overlap of the LLs [11].  

 

1.4 Plateau-insulator transition 
 
The quantum Hall transition at the lowest Landau level at νc = ½ is a very special one. In 

the limit of large magnetic fields the 2DEG becomes an insulator with RH quantized at the 

value of h/e2 [20]. This transition has been termed the plateau-insulator (PI) transition. An 

example of magnetotransport data taken on an InGaAs/InP heterostructure in this regime 

are shon in Fig 1.3 [21]. 
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Figure 1.3 Magnetotransport data taken on an InGaAs/InP heterostructure (ne = 2.2 × 

1015 m-2) covering PP transitions and the PI transition at Bc = 17.2 T. Upper frame: 

ρxy for positive and negative direction of the magnetic field B and the field-polarity 

averaged data. Lower frame: ρxx. Temperatures range from 0.37 to 4.2 K as indicated. 

Figure taken from Ref. [21]. 
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The crossing point of the ρxx curves defines the critical field Bc at which the PI transition 

occurs. Due to sample inhomogeneities a sizeable component of ρxx is mixed into ρxy as 

seen in Fig. 1.3. However, by averaging over two polarities of the magnetic field ρH can be 

extracted from the ρxy data. An important feature to notice is that below the critical field Bc 

the longitudinal resistance decreases with decreasing temperature (metallic behavior) and 

above Bc the resistance increases with decreasing temperature (insulator type behavior). 

This is why often in literature this transition is referred to as a metal-insulator transition.  

In this thesis we will focus on the plateau-insulator transition and extract the critical 

exponents of the quantum Hall quantum phase transition. The choice for the PI transition is 

motivated by the ability to deal with macroscopic sample inhomogeneities, which strongly 

affect the magnetotransport tensor and hamper a proper scaling analysis for the plateau-

plateau transitions. This work strongly builds on the Ph.D thesis work of Ponomarenko 

[11] and de Lang [23].  
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1.5 Outline of this thesis 
 

This thesis consists of seven chapters including this introduction.  

In the second chapter several basic theoretical concepts relevant for the field of quantum 

phase transitions are introduced. We discuss scaling and power law behavior, and give the 

universal scaling functions for the conductivity tensor in the QHE. We illustrate relevant 

and irrelevant critical behavior with the help of a renormalization group flow diagram.  

In Chapter 3 we present the experimental aspects of measuring the conductivity tensor on a 

Hall bar. We compare the commonly used AC-lock-in technique, with a newly 

implemented DC method, which we developed to reduce the effect of capacitive coupling 

for samples with very large resistance values.  Sample details are also given in this Chapter.  

In Chapter 5 we present a magnetotransport study on an InGaAs/GaAs quantum well in the 

quantum Hall regime. Data are taken at four carrier densities obtained by illuminating the 

sample. The PP-transition data are used to characterize the sample and determine the carrier 

density gradient of the Hall bar. The carrier density is evaluated with help of reflection 

symmetry and numerical simulations of the PP-transitions [11].  Next we investigate the 

longitudinal resistivity at the PI-transition and its critical behavior. The data are compared 

with previous results obtained on a different sized Hall bar [11]. Finally we report on a 

numerical study of the effect of the density gradient on the critical behavior of the PI 

transition for our specific Hall bar geometry.    

Chapter 5 deals with the irrelevant critical behavior at the PI transition of the InGaAs/GaAs 

quantum well. We briefly discuss the concept of the “stress tensor” and distinguish between 

‘local’ and ‘global’ variables. The ρH data are presented and analysed with a so-called data-

collapse procedure, which gives access to the irrelevant critical exponent yσ. Finally, we 

construct the renormalization group flow diagram and discuss its implications.  

Chapter 6 deals with a different topic. Here we investigate the influence of a thin central 

AlAs barrier on the magnetotransport and optical properties of a δ-doped 

GaAs/InGaAs/GaAs quantum well. We first examine a series of six samples: three different 

pairs, each pair consisting of a sample with and without barrier. Magnetotransport data, 

photoluminescence data and wave function calculations are presented for the samples with 

and without barrier. It turned out that for this series of samples the δ-doping layers 
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themselves act as additional quantum wells and distort the shape and distribution of the 

wave functions. Therefore, a second series of samples was prepared and investigated.  

In Chapter 7 again a new topic is introduced. Here we investigate the effect of a tilted 

magnetic field on an InxGa1-xAs/GaAs bilayer quantum well. In this material the Landé g-

factor is much larger than the one in heterostructures that are traditionally used. This larger 

Landé g-factor will allow for a much larger spin splitting under influence of a magnetic 

field. Magnetotransport data in the quantum Hall regime for single (SQW) and double 

quantum wells (DQW) are presented and compared with each other. Several unique 

features in the data of the DQW system are explained using Landau level fan calculations. 
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2. Theoretical concepts 

 

 
The quantum Hall effect (QHE) provides an exemplary study of quantum phase transitions 

(QPT). The most powerful theory to study (quantum) phase transitions available today is 

the renormalization group theory (RGT). Founding father of the RGT is K.G. Wilson [1-4], 

who in 1985 received the Nobel price for it. One of the strengths of the RGT is the 

capability of describing the system arbitrary close to the quantum critical point. This is 

done by renormalizing the system, i.e. redefining the concept of unity. Unity in the case of 

QPTs is defined by characteristic length scales, like the correlation length. When a system 

approaches the quantum critical point (QCP), a divergence of the characteristic length 

scales occurs. The RGT enables one to map a system asymptotically close to the QCP, thus 

having a certain length scale, onto the same system with a different length scale. None of 

the other existing theories, like mean field theory, and Landau-Lifshitz theory are capable 

of approaching the QCP as close as the RGT. The RGT predicts that the characteristic 

length scales of a system obey scaling. A system is said to scale if the equations of state, 

asymptotically close to the critical point, for different length scales are related to each 

other by so-called scaling factors (aH and aT). Eq. 2.1 gives a general expression of scaling 

behavior. 

                                                                                                                                           (2.1) (( LAF λλλ = ),), LAFS
aa

S
TH

 

Critical exponents can always be expressed as a funtion of aH and aT. Systems with the 

same values of critical exponents and scaling functions belong to the same universality 

class. Essential to scaling is power-law behavior. If a system is proven to be 

renormalizable, this power-law behavior for the particular system is also observable by 

means of experiment. Pruisken has proven the renormalizability of the QHE for the non-

interactive case in 1987 [5,6] and later for systems which include interactions [7]. The 

renormalizability of the QHE can be made visible in a so called renormalization flow 
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diagram. An example is given in Fig. 2.1. Basically the diagram shows the evolution of a 

quantum Hall system in the σxx-σxy plane as a function of the perpendicular magnetic field. 

Ideal semi-circles represent a homogeneous electron gas at T = 0 K (relevant flow).  The 

vertical arrows in Fig. 2.1 show the flow of the system from T ≠ 0 to T = 0 K (irrelevant 

flow). 

 

 

Figure 2.1 Renormalization flow diagram for the QHE. The top right corner shows 

four different transitions that obey the same scaling laws i.e. belong to the same 

universality class. Picture taken from Ref. [19]. 

 

The integer values i = 0, 1, 2 etc. on the σxy axis represent the stable fixed points. The 

values i + ½ represent the unstable fixed points. These are the QCPs at which the QPTs 

occur. At the QCP the components of the conductivity tensor attain the values [8]: 

                                             σxx,c =
1
2

, σxy,c = n +
1
2

;n = 0,1,2...                                            (2.2)    

Using Eq. 2.2 we can define the scaling variables: 

                                                  
2
1,

2
1 −−=−= nxyxx σθσσ                                               (2.3) 
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These are the variables that are transformed upon renormalization. The QHE effect is the 

only system in which the scaling variables can be directly measured. The conductivity 

tensor follows from the measured resistivities as shown in Eq. 2.4. 

                                                  
2222 ,
xyxx

xy
xy

xyxx

xx
xx ρρ

ρ
σ

ρρ
ρσ

+
=

+
=                                        (2.4) 

Eq. 2.4 also describes the unusual state of both ρxx and σxx being zero when ρxy forms a 

plateau.  

From a pure theoretical point of view the scaling functions can be constructed for T = 0. 

Experimentally this is inaccessible, so the scaling functions need to be adapted to the 

experimental situation of T ≠ 0. This is done by coupling the temperature to the effective 

size of the system (finite-size scaling). As effective size is taken the phase coherence length 

Lφ: 

                                                  ,                                                                      (2.5) 2/pTL −=ϕ

where p is the dynamical critical exponent. Renormalizing the system changes the effective 

size as: , which in turn changes the scaling variables according to Eq. 2.1:  

 and , where y

bL→

θyb→ σσ σyb−→

L

θθ θ is the relevant and yσ the irrelevant critical exponent. 

Another relevant length scale is the localization length Lξ: 

                                                   Lξ = E − En ,s
χ ,                                                              (2.6) 

where En,s is the energy at the center of the Landau level.  When Lξ > Lφ electrons in the 

2DEG are delocalized. The renormalization flow functions [9] have the shape: 

                                                   dσab

d ln L
= βab (σxx ,σxy ,c),                                                    (2.7) 

where  

   (2.8)  σab (Lϕ ,B) = fab (Lφ
1/ χ (B − Bc )) + O(Lφ

1/ χ (B − Bc )2,Lϕ
−yσ )

 
is the conductivity tensor and ab stands for the arbitrary combination of x and y. 

It has been shown that the relevant exponent yθ is just the inverse of the localization length 

exponent χ. From Eq. 2.8 we can draw two important conclusions. The first one is that the 

irrelevant exponent yσ starts to play a role only at higher temperatures. The second (by 
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substituting the measurable quantity of T, using Eq. 2.5) is that the relevant critical 

exponent κ obtained by experiment equals: 

                                                              κ =
p

2χ
                                                               (2.9)  

The value of χ has analytically been estimated to be 2.3 ± 0.4 [10] for the non-interacting 

case. This is in good agreement with numerical results [11-16]. There is a strong 

uncertainty concerning the value of p, which is estimated to be bounded between 1 for the 

Fermi-liquid approach and 2, where the main scattering mechanism is due to electron-

electron interactions, both for zero magnetic field [17]. Using these values for p and χ, the 

value of κ according to Eq. 2.8 should lie between 0.22 and 0.43. Consequently the exact 

value of κ is not predicted by theory, but can only be determined by experiment. In the 

experimental data certain quantities obey power-law temperature dependence involving κ 

as exponent. The width of the peaks in the ρxx-curves (∆ν) and the maximum slopes of the 

transitions in the ρH-curves both obey power-law T dependence: 

                                                         κ

ν
ρ

ν T
d

d xy ∝⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∝∆

max

                                                (2.10) 

In the same way the PI-transition around the crossing point satisfies the following relation 

(Shahar et al. [18]): 

                                                   
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−=
)(

exp),(
0

2 Te
hT c

xx ν
νννρ ,                                          (2.11)                        

with                                  

                                                            κν )/()( 00 TTT = ,                                                 (2.12)  

where T0 is a phenomenological temperature. The term between brackets in Eq. 2.11 is in 

fact the scaling variable X: 

                                                              X =
ν −νc

T /T0( )κ
                                                       (2.13) 

It has been shown that for the QHE the components of the conductivity tensor, σxx and σxy, 

which are functions of both the magnetic field and the temperature (see Fig. 2.1), can in 

fact be described as functions of the single scaling variable X [19]. 

The corrections to scaling are described by the second term of Eq. 2.8. Even though present 

in every quantum Hall transition, the experimentally observable behavior that is only 

controlled by the irrelevant exponent yσ is the deviation of the Hall resistance from the 

quantized value at the PI-transition: 
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                                                                                (2.14) σηηρ yX
xy TTTeT )/()(,)(1 1=+= −

Here ρxy is given in units of h/e2 and T1 is a phenomenological temperature scale. The role 

of the critical exponents can be easily explained using the renormalization flow diagram 

(Fig. 2.1). Central in this diagram are the fixed points. Starting from the unstable fixed 

points at σxy,c = n + ½, with n being an integer, there are four directions to go: Two are 

along the semicircle (T = 0) towards the stable fixed points. The other two directions are 

toward the unstable fixed point originating outside the semicircle (T ≠ 0). Simply put, the 

flow along the semicircle, in the neighborhood of the unstable fixed point is characterized 

by the relevant critical exponent κ, and the flow in the ‘vertical direction’ originating 

outside the semicircle is characterized by the irrelevant critical exponent yσ.     

The relevant and irrelevant critical behavior is combined in the universal scaling functions 

(to first order in X and ŋ) [20]: 

                                             
XX

X

ee
eX 20 21

),( −−

−

++
=

η
ησ                                                   (2.15) 

    and 
                                             

XX

X

H ee
eX 221

1),( −−

−

++
+=

η
ηησ                                                  (2.16) 

These functions describe every point in the renormalization flow diagram in the critical 

regime. Also they describe all quantum Hall transitions in the critical regime and for this 

reason are universal. So the relevant and irrelevant critical behavior is the evolution of a 

quantum state near the critical point, under influence of the magnetic field and temperature.  

Eqs. 2.15 and 2.16 include two important symmetries concerning scaling behavior in the 

QHE.  

• Particle-hole symmetry:   

                                        ),(),( 00 ησησ XX −=                                                      (2.17) 

                                                ),(1),( ησησ XX HH −−=                                                  (2.18) 

• Periodicity in σH. 

The second symmetry is another expression of the universality of the quantum Hall 

transitions.   

The concepts discussed in this chapter will be used to analyze the experimental results 

presented in chapters 4 and 5 of this thesis. 
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3.  Experimental aspects 

 

 
3.1 Introduction 
 
Traditionally magneto-transport measurements on two-dimensional electron-gasses (2-

DEG’s) in order to probe the quantum Hall effect have been done using the lock-in 

technique. The reason for this is that the measurements take place at temperatures ranging 

from a few Kelvin to sub-Kelvin temperatures and a very small current has to be used 

(varying from a few nano-amperes to even less than 1nA) in order to prevent Joule heating. 

Measuring with a small current becomes even more important when the 2DEG reaches the 

insulating regime and the resistance of the sample diverges exponentially, since heat is 

dissipated as the product of the resistance with the square of the current. Under these 

experimental conditions measuring the electrical resistance using the lock-in technique will 

give the best signal-to-noise ratio. The sinusoidal signal also causes thermal voltages 

present in the circuit to be averaged out, without any additional manipulation of the data 

required. The Hall and longitudinal resistances are measured using a four point 

configuration, such that the voltage and current leads in the circuit do not play a role.  

Nevertheless, in spite of this great advantage of the lock-in technique, it turned out to be 

inadequate for our magnetotransport experiments when probing the ‘irrelevant’ critical 

behavior of the PI-transition of the quantum Hall effect. The main reason for this is that 

when the 2DEG enters the insulating state, its resistance increases drastically and the 

experimental circuit (wiring, cables etc.), due to the AC-nature of the measurement, gives 

rise to an additional capacitive coupling. Consequently not all the current flows through the 

Hall bar and the voltages measured over the Hall bar contacts become unreliable. 

In this chapter the above mentioned method will be discussed together with its inadequacy 

to work under the extreme experimental conditions needed to observe the critical behaviour 

of the PI transition. Following this we will present an alternative method that has been 

used. Even though this DC-method cannot compete with the signal-to-noise ratio offered 
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by the lock-in technique, its application has overcome the main difficulty of capacitive 

coupling, connected to the ac-measuring method, mentioned before. Then a comparison of 

both methods will be made. Finally we will mention some adjustments that we made on the 

size of the Hall-bar in order to reduce the total resistance of the 2DEG once the system 

enters the insulating state. 

 

3.2 Measuring techniques 
 
3.2.1 AC-measuring 
 
The alternating current (ac) - method is widely used to measure electrical resistance, by 

means of the lock-in amplification technique. The basic working principle of the lock-in 

technique is phase sensitive detection, i.e. the ability to extract a sinusoidal signal of known 

frequency and phase which is immersed in a ‘background’. The total input signal measured 

with the lock-in amplifiers (Vin) can be represented within the complex plane in the 

following way: 

Re

Im

In phase

VinOut of phase

 

Figure 3.1 Representation e complex plane. The input signal is shown here 
decomposed in an in-pha out-of-phase component. Note that a capacitor 
gives a phase shift of -90° ct to the in-phase component and an inductance 
gives a phase shift of +90° ct to the in-phase component. 

iωL 
 
 
 
        ϕ 
-1/iω 
 
 

 

A capacitor causes a phase shi and an inductance a phase shift of + 90°. The out-

of-phase signal in Fig. 3.1 is th or of the capacitive effect and the contribution of a 
of Vin in th
se and an 
 with respe
 with respe

ft of -90° 

e net vect
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possible inductance. A measurement scheme representing our experimental case is given in 

Fig. 3.2 [1]. 

 

Cryostat

Preamps

Lock-ins
6m

(EG&G 5186)

C1
C2

C3

R

 
Figure 3.2 Scheme of the lock in amplification 4-point resistance measurement 
technique on a Hall bar. C1, C2, C3 and R show unwanted capacitors and resistors an 
ac-current can flow through.  

 

As Fig. 3.2 shows, a big part of the measurement scheme consists out of wiring: 
 

• The coax-cables connecting the lock-in amplifiers to the pre-amplifiers and 

the current cable connecting one lock-in amplifier to the top of the cryostat 

(~6 m) 

• The coax-cables connecting the pre-amplifiers to the connector at the top of 

the cryostat 

• The wiring connecting the connector at the top of the cryostat to the sample 
(~2 m) 
 

At this point we should remark that the Hall bar needs to be completely isolated from its 

environment (sample-holder, cryostat) in order to prevent current flowing to ground, so ‘R’ 

in Fig. 3.2 should be much larger than the resistance of the Hall bar. Basically there are 

three main constructions within the experimental setup that can contribute to the effect of 

capacitive coupling. These are shown in Fig. 3.2 as C1, C2 and C3. 

• C1 is the capacitor formed by the core and the shield of a coax cable. 

• C2 is the capacitor formed by a wire and its environment, e.g. the cryostat. 

• C3 is the capacitor formed by two neighboring wires. 
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The impedance of a capacitor is given by: 

                                                               )/(1 CiZ ⋅⋅= ω                                                    (3.1) 

where ω is the angular frequency and C is the capacitance. Capacitive coupling becomes a 

significant problem when the resistance of the sample becomes comparable to the 

impedances caused by C1, C2 and C3 and is the main reason for the ac-method to become 

inadequate. From Fig. 3.2 the problem becomes clear immediately. Not all the current 

flows through the Hall bar. This means that the voltages measured by the lock-in amplifiers 

over the different Hall bar contacts are based on a current that is not exactly known to us. 

To give a quantitative example: Coax cables have a capacitance of 50 pF/m.  

In the past in another similar cryostat the typical capacitance between wires for one contact 

pair has been shown to be around 700 pF [1]. Using the typical frequency of 13 Hz will 

give an impedance of 1/(ωC) = 1/(2πfC) ≈17 MΩ. This becomes a problem in the insulating 

regime where the total resistance of the sample can reach values > 1 MΩ, meaning that not 

all the current flows from one current contact to the other.  Measuring with a very low 

frequency is not a practical solution to the problem. In that case we would have to integrate 

over a much larger time scale (at least over ten periods of the input-signal [1]) to get an 

accurate averaging, which will cause a considerable delay in the measurement. This delay 

could be overcome by increasing the magnetic field at a lower sweep-rate, a process that 

would become too much time and helium consuming.  

One could think of measuring the values of C1, C2 and C3 and correct for the ‘current-loss’ 

due to them. This is also not a very practical solution. The reason is obvious. The reality is 

far more complicated than shown in Fig. 3.2. In fact current can leak away between every 

pair of wires and between every wire and its environment. To correct for this is a very 

difficult task at least. In the past a criterion has been set up based on the magnitude of the 

out-of phase component in order to determine whether the measured signal is reliable. It 

has been shown that if the out-of-phase component stays below 10 % of the in phase 

component, than the (systematic) error in the measured R (B) stays below one percent [1]. 

This follows easily from Fig. 3.1, where if the out of phase component is 10 % of the in-

phase component, then φ ≈ 5 deg and the in-phase component is still > 99 % of the real 

value. This criterion, regardless how helpful it has been in the previous measurements, has 

turned out to be not strict enough for the purpose of measurement presented in the 

following chapters.  
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It turned out that even if the 10 %-criterion was satisfied, the effect of capacitive coupling 

was still to high to give reliable data. Considering this limitation of the lock-in technique 

we decided to switch to a different method, based on a commutating DC- signal. This 

method will be discussed in the next paragraph. 

 

3.2.2 DC-measuring 
 

To measure DC we used a 6220 DC current source and a 2182A nanovoltmeter, both from 

Keithley Instruments Inc. The 6220 current source can generate currents from 0.1 pA to 

105 mA. The 2182A voltmeter can measure voltages from 1 nV to 120 V.  The input 

resistance of the voltmeter lies above 10 GΩ for all the measuring ranges. Measuring DC 

will give additional problems. Since there is no phase- or frequency dependent detection, 

we will have to deal with a higher noise level.  Also a way has to be found to deal with 

thermoelectric voltages throughout the circuit. To deal with thermoelectric voltages we 

applied a measuring technique that makes use of commutating DC-current. A simple 

measurement scheme is shown in Fig. 3.3. 

  

 

 

 

 

 

 

 

Figure 3.3 Schematic representation of 4-points DC measuring: 
Vmeasured  = VHallbar +  Vthermoelectric + Vnoise

I V

Rlead  

 

 

 

 

 

 

 
Thermoelectric voltages can be dealt with by commutating the current. By averaging the 

measured voltages for +I and –I we can eliminate this contribution. In formula form this 

looks like: 
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VI + = VHallbar +VThermal

VI − = −VHallbar +VThermal    (3.2) 
 

Thermoelectric voltages may vary in time (drift). In order to deal with the above 

mentioned problems we used the 3-step delta-method [2], [3] described next. 
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Figure 3.4 three-step delta method. The dashed line shows the situation, of a linear 
dependence of the thermoelectric voltages with time. Figure taken from [2], [3]. 

 

The final value Vf of the first delta cycle is calculated in the following way [2], [3]:                                      
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where V1, V2 and V3 are the val

advantages of this method are twofold. It deals better with thermoelectric variation in the 

system and it does additional averaging on the data which helps improve the accuracy of 

the measurement. Every step in this procedure can be divided in two parts. The delay time 

and the integration time. The delay is needed to take into account the response time of the 

system. By adjusting this we can make sure that all the current goes through the circuit, 

before we start measuring the voltage during the integration time. The delay time should 

increase as the resistance we want to measure increases. The length of this integration-time 
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is expressed in PLC (power line cycle). One PLC is 0.02 s for 50 Hz. After each step the 

voltmeter gives one value, which is the average over the number of PLC’s (NPLC) in that 

step. The higher the NPLC the more accurate the measurement of the voltage will be, but 

the longer it takes (see Fig. 3.5). 
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Figure 3.5 For one current polarity the measuring time is divided in a ‘delay’ and 

 

 delay of 400 ms and a NPLC of 30 will give total period time of 2 s, which can be 

a ‘time of integration’, expressed in number of PLC’s. Figure taken from [2]. 

A

considered as 0.5 Hz (Fig. 3.5). Expressing this commutating behavior in Hertz can create 

the impression that this method is fundamentally similar to the AC method. This is actually 

not the case and the next point we make is a very important one. In the DC method a 

current source with adjustable output value is being used. The delay time in the voltage 

measurement makes sure that all the set-current goes through the circuit before the voltage 

is measured. Since the current during one step is completely DC in nature, this means that, 

in theory, all the set-current has to go through the Hall bar before the voltage measuring 

starts. The only period in time in which the current changes is when its polarity changes. 

Considering that during this period the voltage is not measured (if the delay time (Fig. 3.5) 

is bigger than the response time of the system), what is left is a way of measuring that is 

effectively 100% DC and the previous mentioned problem of capacitive coupling does not 

play a role anymore. Important now is to find a compromise between the accuracy of the 
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measurement and the time it takes, since we are dealing with a signal that varies in time. To 

reduce the noise level further, a so called ‘moving filter’ has been added, which averages 

over a subsequent number ‘n’ of values of Vf (Eq. 3.3), moves one value further, repeats the 

averaging, and so on. The question that now rises is: How does this DC-method compare to 

the traditional AC-method? This will be discussed in the next paragraph. 

 

3.2.3 AC versus DC 

pare these methods is to look at the insulating regime of the 
 

he easiest way to comT

quantum Hall effect. Since the resistance of the 2DEG in this regime diverges 

exponentially as function of the magnetic field, we can expect that the method of 

measuring sooner or later will reach its limitation. In Fig. 3.6 the insulating regime 

measured both AC and DC is presented. The settings during both measurements where 

such that the time-constants (i.e. the time over which is averaged before the equipment 

gives a resistance value) were similar (~ 5 s).  Fig. 3.7 shows that the out of phase 

component reaches about 6 % of the maximal resistance value. This is within the previous 

mentioned 10 % criterion. There is a clear difference between the ac and dc measured 

curve. This difference, however, is not only explained by the ac method losing accuracy 

due to capacitive coupling. In Fig. 3.8 the Hall resistivity is shown for the same density and 

temperature. A difference between the measured plateau values and the expected plateau 

values is obvious. The measured plateau values are about 1.5 % below the expected values. 

This difference can be attributed to an inaccuracy in the multiplication factor of the pre-

amplifiers (Fig. 3.2). So every curve measured ac should be corrected for this. Multiplying 

the ac measured curve in Fig. 3.6 with a factor of 1.015 allows us to make a better 

comparison of both methods (see Fig. 3.9). The difference between the AC- and DC-curves 

in Fig. 3.9 is still considerable. At the critical value ‘Bc’ the difference amounts 7.5 %. The 

total sample resistance at this point is about 182 kΩ. The DC measured values are at each 

point higher than the AC measured values. Even though the above mentioned is a simple 

approach to the problem, it certainly speaks in favor of the DC-method. In section 3.3 we 

will look at the differences observed in the measurements of the Hall resistance.  
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Figure 3.6 Insulating regime measured both AC and DC. AC: f = 2.6 Hz, I = 1 nA, 
TC  = 5 s; DC: Del = 0.2 s; NPLC = 15; MF = 2; I= 1 nA. 
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Figure 3.7: Out of phase component in percent of Rxx. 
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Figure 3.8 Hall resistance measured AC for ne = 1.3 x 1015 m-2. Dashed lines indicate 
the expected plateau values. 
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Figure 3.9 Same curves as in Fig. 3.6 only with the ac curve multiplied with a factor 
1.015. 
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3.3 Capacitive coupling: The subtle difference 
 
In the previous paragraph it has been shown that the effect of capacitive coupling strongly 

influences the resistance measurement in the insulating regime. We can assume that the 

influence of this capacitive coupling will be even more drastic while measuring the 

deviation from quantization in the insulating regime, since the effect we are after is very 

small (~ 100 Ω), compared to the actual measured signal (> 25 kΩ) and the total resistance 

of the sample. In Fig. 3.10 the ρxy -data measured for two field polarities at T = 0.8, 1.0 and 

1.2 K are presented. From previous experiments we expect the averaged curves to show a 

positive deviation from the quantized value ρxy = 1 in units h/e2 [1],[4]. This is clearly not 

the case for T = 0.8 K. In Fig. 3.11 we show the averaged curves both for the ac- and the 

dc-method. There is a big difference between the ac and dc measured data.  Notably is that 

for the dc-method all the curves show a positive deviation. In Fig. 3.12 we show the out-of-

phase component for the measured Hall resistances.  

Indeed something peculiar happens: The increase of the out of phase signal is asymmetric 

for both field polarities. The effect of capacitive coupling is larger when measuring with 

positive field polarity. This explains why the ac-measured curves are always lower in 

magnitude than the dc-measured ones.  

One might wonder where this asymmetry comes from. By changing the field polarity, we 

also change the polarity of the Hall voltage. Since every contact is wired differently in 

terms of length of cables, position of wires with respect to each other and with respect to 

the cryostat, it can be assumed that the effects of C1, C2 and C3 (Fig. 3.2) are different for 

different field polarities. 
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Figure 3.10: Hall resistance measured AC for both positive and negative field near 
the PI-transition at T = 0.8, 1.0 and 1.2 K plus the averaged curves for both field 
polarities. 
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Figure 3.11 Hall resistivity for T = 0.8, 1.0 and 1.2 K measured with both the 
ac- and dc-method. Dashed lines: AC; solid lines: DC. 
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Figure 3.12 Out op phase component of the Rxy measurement for positive and 
negative magnetic field. 

 

3.4 Shape of Hall-bar 
 

Since we want to keep the resistance of the 2DEG as low as possible we have designed a 

Hall-bar with different dimensions than the one used in previous measurements [1]. The 

newly designed Hall bars have a width of 200 µm against the 75 µm of the Hall bar 

described in [1]. The total length of the Hall bar has been adapted to assure that the current 

between the voltage-contacts flows parallel to the Hall bar. Our decision has been 

supported by numerical calculations [1]). The dimensions of the Hall bar that we used are 

displayed in Fig. 3.13. 
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Figure 3.13 Sample 3388#1-W with respective dimensions. 

 
Notice that the geometrical factor (Length/Width) now becomes 1.5, with respect to the 

previous 5.2 [1], keeping the longitudinal resistance more than three times as low. In Table 

3.1 a comparison is made between both Hall bars at the PI- transition. Both samples were 

made from the same wafer, which is an In0.2Ga0.8As/GaAs quantum well grown by MBE. 

The quantum well is a 12 nm thick In0.2Ga0.8As layer, separated by the doping layer by a 20 

nm thick spacer. There is no caplayer. The Hall bars were etched by photolithography. 

 
                             Table 3.1 Comparison of Rxx and RHallbar at the PI-transition  
                             for 3388#1 and 3388#1-W 
 

Hallbar      (L/W) Rxx (kΩ) RHallbar (kΩ) 

3388#1        (5.2) 134.2 498.5 

3388#1-W   (1.5) 38.7 219.3 

 
It is clear that Hall bar 3388#1-W is the most suited of the two for our aim of keeping the 

total resistance of the Hall bar as low as possible. 
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3.5 Conclusions 
 

In this chapter two different methods of measuring the magnetotransport properties of a 

Hall bar made of a 2DEG in the quantum Hall regime have been discussed.  

• The traditional low frequency ac-method using the lock-in technique  

• The dc-method which through signal averaging and commutation has been 

adapted to make it suitable for measurements using very low excitation currents.  

Due to the nature of the dc-method the problem of capacitive coupling, inherent to the ac-

method, can be strongly reduced or avoided completely, depending on the measurement 

parameters ‘delay time’ and ‘NPLC’ (Fig. 3.5). Thus the dc method compares favorable 

when measuring Hall bars in the high-ohmic regime of the plateau-insulator transition.  
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4. Critical behavior 

 
 

4.1 Introduction 
 
During the last two decades, following the discovery of the quantum Hall effect by von 

Klitzing et al. [1] and the pioneering work on quantum criticality of the PP-transitions by 

Wei et al.  [2a-3], a host of experimental work has been done in order to shed light on the 

exact nature of scaling in the quantum Hall regime at low temperatures. The principal 

objective is to establish the following scaling laws for the experimentally observed Hall 

resistance RH and the longitudinal resistance R0 with varying magnetic field B and 

temperature T [2b] 

                                                   RH ,0 = FH ,0(∆B,T −κ )                                  (4.1)            

Here, ∆B = B – B* is the magnetic field relative to the critical value B* which corresponds 

to the center of a Landau band. The critical exponent κ equals the ratio  

   κ  = p / 2ν0                                       (4.2) 

with ν0 denoting the localization length exponent of the 2DEG and p is a finite temperature 

exponent determined by inelastic scattering. Eq. (4.3) determines the maximum slope of the 

Hall resistance RH with varying B to diverge algebraically as T goes to zero according to 

                                                                   ∂RH

∂B
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

max

∝ T −κ .                                           (4.3) 

Wei et al. originally extracted the numerical value κ = 0.42 from the transport data taken 

from a low mobility InP-InGaAs heterostructure which is independent of the index of the 

PP transition [2a-3]. Following the renormalization theory of the quantum Hall effect 

developed by Pruisken [2b] this experimental value was subsequently regarded to be 

universal.  

These remarkable advances have led several groups around the world to investigate the 

power law of Eq. (4.3) for a variety of different but otherwise arbitrarily chosen laboratory 

samples [4-7]. A range of different values for κ were measured, however, varying from 0.3 

to 0.9. The difficulty in experimentally establishing universality of the PP transition has 
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caused the quantum Hall community to split up into two different groups with entirely 

different physical objectives each.  

 

4.1.1 The ‘H.P. Wei’ school of thought 
 
The first group, briefly termed the ‘H.P. Wei group’, held on to the general belief that the 

critical exponent κ is universal. Motivated by the theoretical foundations of scaling 

established by Pruisken, this group experimentally pursued the universality of not only κ 

but also the complete scaling functions FH, 0 with varying T and B. It was well understood, 

however, that universality strictly holds in the limit where T goes to absolute zero. In 

practice this means that the transport measurements at finite T should be conducted on 

sufficiently homogeneous samples with potential fluctuations that are short-ranged relative 

to the magnetic length. 

 

4.1.2 The ‘phenomenological’ school of thought 
 
Quite unlike the experimental objectives of the H.P. Wei group, the second school of 

thought, briefly termed the ‘phenomenological group’, went on in different directions 

altogether. For example, to explain the differences in the experimental κ, finite size scaling 

experiments have been conducted that were aimed at disentangling the individual 

exponents values of p and ν0. These investigations led to the idea that the exponent p, 

unlike the localization length exponent ν0, is a material dependent parameter that varies not 

only from sample to sample but also from Landau level to Landau level.  

At a much later stage, experiments conducted on a new class of high quality samples 

indicated yet a very different behavior. Rather than a power law in T, the transport data 

were now fitted to a semi classical ‘linear law.’ (Shahar et al. [8]) This kind of data fitting 

clearly does not teach us anything about the phenomenon of Anderson localization and 

fundamentally upsets the entire idea of quantum criticality in the quantum Hall regime.   

At the time of this writing, the various conflicting results and ideas advocated by the 

‘phenomenological school of thought’ seem to have lost most of its support in the 

literature. What has in general been overlooked by this group is that the transport data taken 

from arbitrary samples at finite T do not necessarily reveal the true (scaling) behavior of the 
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2DEG in the limit T = 0. It may therefore not be a complete surprise to know that the most 

important advances in the field have emerged from entirely different sources.  

 

4.1.3 The PI transition 
 
First, there is the longstanding experimental problem of how to disentangle the effects of 

macroscopic sample inhomogeneity from the intrinsic transport properties of the 2DEG. In 

brief, it has turned out that defects such as small gradients in the electron density can cause 

major aberrations in the extraction of κ from the PP transitions [11-14]. These as well as 

other kinds of defects such as contact misalignment have a much less dramatic impact 

when the measurements are conducted on the PI transition. Subsequently, the PI transition 

became the primary focus of experimental interest. 

The most important conclusions drawn from the experiments on the PI transition can be 

found in Refs [15,16]. Unlike the ‘generally accepted’ exponent value κ = 0.42 previously 

obtained from three different PP transitions of an InP-InGaAs heterostructure, the correct 

experimental value extracted from the PI transition of the same sample turns out to be κ = 

0.57. The difference between these two experimental estimates can be explained based on 

density gradients that dramatically complicate the experiment on the PP transition but do 

not affect the κ taken from the PI transition.  

The detailed studies on the PI transition furthermore revealed universal scaling functions 

for the longitudinal conductance σ0 and the Hall conductance σH. These scaling functions, 

when plotted as T-driven flow lines in the σ0-σH conductance plane, display all the 

fundamental features of scaling that previously could not be observed from the data taken 

from the PP transitions. As pointed out in the original papers, these findings provide 

important information on the unification of the fractional quantum Hall effects based on 

composite fermion theory, in particular, the cross-over between the half-integral Fermi-

liquid state and the quantum critical state. 

Even though the advances made on the PI transition have resolved many longstanding 

controversies in the field, several major experimental difficulties have nevertheless 

remained. For example, since not much is known about the microscopic details of the low 

mobility InP-InGaAs heterostructure it is unclear whether the criteria for a homogeneous, 

short ranged random potential are being satisfied. The random alloy scattering in these 
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samples may, in fact, exhibit long-ranged components relative to the magnetic length. This 

would mean that the newly extracted value of κ = 0.57 is, in fact, an effective exponent and 

even lower temperatures are needed in order to be able to extract the much sought-after 

critical value.  

 

4.1.4 Numerical value of κ 
 
This takes us to the second important advance more recently made by the Princeton group 

of D.C. Tsui who investigated the PP transitions taken from a set of specially grown state-

of-the-art AlxGaAs/Al0.33Ga0.67As heterostructures with different Al concentration x [17,18]. 

By varying x one effectively varies the range of the potential fluctuations in these otherwise 

extremely homogeneous samples. For example, for small values of x the Al atoms are all 

distant apart from each other and the disorder potential is predominantly long- ranged. On 

the other hand, by increasing the concentration x the Al atoms come closer together and the 

random potential fluctuations become predominantly short-ranged. Upon further increasing 

the concentration x the Al atoms are believed to form clusters.  This clustering takes place 

over distances which are large relative to the magnetic length and, hence, the randomness 

becomes long-ranged again.  

The experimental values for κ extracted for different values of x generally exceed the value 

0.42. However, when the criteria for short range potential fluctuations were met D.C. Tsui 

et al. measured a value of κ = 0.42 in the temperature range from10 to 1000 mK. This 

experimental value - which surprisingly coincides with the original but incorrect result of 

H.P. Wei et al. - is now believed to be the correct universal value of κ. These impressive 

findings by the Princeton group unequivocally demonstrate the existence of quantum 

criticality in the quantum Hall regime and, hence, the correctness of the `H.P. Wei’ school 

of thought. 

 

4.1.5 Confronting controversies 
 
The advances made on both the PI transition and the critical exponent κ are an important 

step toward establishing a unified renormalization theory of the quantum Hall effects. At 

the same time, these advances are a landmark in the theory of Anderson localization and 

interaction effects. However, the subject matter is still at its infancy and certainly not free 

of controversies. First of all, it is important to emphasize that the newly established value 
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of κ = 0.42 has absolutely nothing to do with the original findings of H.P. Wei et al. Unlike 

the claims made by D.C. Tsui et al., the coincidence is purely accidental thus creating a lot 

of confusion. The only way to understand the original H.P. Wei result of κ = 0.42 is by 

considering the combined effects of both long ranged potential fluctuations and 

macroscopic sample inhomogeneity. Whereas the former causes the experimental κ to 

increase from the universal value 0.42 up to the aforementioned value of 0.57, the latter 

causes κ to decrease from 0.57 back to the numerical value 0.42. Notice that this 

combination of experimental defects typically explains the different values of κ in the range 

0.3 – 0.9 previously extracted from arbitrarily chosen samples at finite temperatures. 

Secondly, there are the more recent attempts by the Princeton group to disentwine the 

critical exponents p and ν from the definition of κ in Eq. (4.0) [19]. In particular, by 

studying the scaling of the PP transition with varying sample size L rather than T, the 

individual exponent values have been extracted and the result is p = 2 and ν = 2.4 

respectively. Since the localization length exponent ν is numerically the same as the free 

electron result known from computer simulations, D.C. Tsui et al. conclude that the critical 

behavior of the interacting electron gas and the disordered free electron gas are in the same 

universality class. According to Pruisken this conclusion is incorrect. In particular, the 

advances made in the theory of localization and interaction effects have clearly shown that 

the infinitely ranged Coulomb interaction present in the laboratory sample renders the 

transport of the 2DEG entirely non-Fermi liquid-like. This transport behavior is 

characterized by previously unrecognized interaction symmetries (termed F-invariance) as 

well as distinctly different non-Fermi liquid critical exponent values.  

The experimental problem that was discarded by D.C. Tsui et al. is that finite size scaling 

can only be studied if it compares the data taken from different samples. However, along 

with different values of L one also finds that the characteristic length scale Ls and 

temperature scale Ts for scaling varies from sample to sample in an uncontrolled manner. 

Unlike κ which is measured on a single sample, there is as of yet no experimental design 

that warrants an unambiguous measurement of the individual exponent values of p and ν. 

Last but not least, the samples used by D.C. Tsui et al. do not permit an investigation of the 

PI transition since that lowest Landau level displays the fractional quantum Hall effect. 

This most likely complicates the study of macroscopic inhomogeneity effects and, along 

with that, the subtleties of a unified scaling diagram that incorporates both the integral and 
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fractional quantum Hall effects. In any case, D.C. Tsui et al. do not investigate the 

universal scaling functions for σ0 and σH and it remains unclear whether the PP transitions 

of their samples provide access to the irrelevant exponents describing the corrections to 

scaling. Future work probably will tell. 

 

4.1.6 Outline of this Chapter 
 
In this chapter we will present the results of magnetotransport measurements conducted on 

an InGaAs/GaAs quantum well with a geometrical factor of 1.5 (see Fig. 3.11) using four 

different electron densities (ne = 1.0, 1.3, 1.8 and 2.0 × 1015 m-2). We will consider both the 

PP and PI transition. Whereas the PP transitions give us the necessary information about 

the quality of the Hall bar in terms of density gradients, only the PI transition will be used 

to study quantum criticality. 

 The analysis of the data is done in much the same way as was done previously in Refs [11-

14]. The results will be compared with those obtained from a similar quantum well with a 

geometrical factor of 5.2 in Ref [11]. We will discuss the results of numerical simulations 

and see to what extent the relatively large gradients in the electron density of the 2DEG can 

explain the deviations found in the curves displaying critical behavior. 

Using our experimental results discussed in this Chapter as well as Chap. 5 we will 

construct a T-driven flow diagram that displays both relevant and irrelevant critical 

behavior. We then compare the results with the theoretical predictions on scaling similarly 

to what was previously done in Ref. [15]. 

 

4.2 InGaAs/GaAs quantum well with tunable carrier density: PP transition 
 
The InGaAs/GaAs 2DEG used for our magnetotransport measurements has a tunable 

carrier density. Being insulating in the dark, the electron density in the quantum well can be 

increased by illuminating the 2DEG with an infrared LED at low temperatures.  

The carrier density is an important parameter of the 2DEG since it determines at which 

values of the magnetic field the quantum Hall transitions occur. By changing the carrier 

density in the range in which the field-value at which the PI transition occurs is still 

achievable with our magnet, we can create different sample conditions. This allows us to 
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check for the universality of the critical exponents.  The wafer out of which the Hall bar 

was prepared has been grown by molecular beam epitaxy (MBE) at the Moscow state 

university. The 2DEG is located in a 12 nm thick In0.2Ga0.8As layer, separated from the 

doping layer by a 20 nm thick spacer. Etching of the Hall bar was done using 

photolithography. The carrier concentration in the sample can be varied smoothly between 

zero (insulating sample) and ne = 4 × 1015 m-2 with an accuracy better than 1 % [11]. To 

illuminate the 2DEG we send a current through the LED using a Keithley 2400 current 

source. The illumination was done stepwise by controlling the pulse duration and slowly 

increasing the current through the LED.  An image of the Hall bar is shown in Fig. 3.11 of 

the previous chapter. The Hall bar has 6 potential and 2 current contacts. Unfortunately one 

current contact and two potential contacts turned out to be high-Ohmic which reduced the 

possibility of directly probing the inhomogeneities in the carrier density of the Hall bar. 

Still there are other methods available to estimate the inhomogeneous nature of the carrier 

density. These methods have been applied and will be discussed in this chapter. In the 

following Figs. 4.1 a) - d) we will show the resistance- and Hall curves measured DC for 

the four densities attained after longer and longer illumination. All curves where measured 

using the DC method described in Chap 3. 

Figs. 4.1 a) – d) show the expected improvement of the quality of the data with increasing 

density. For the highest two densities (Figs. 4.1 c, d) the small overshoot of the resistivity 

(ρxy), at the beginning of the plateaus, still visible in the lowest two densities (Figs. 4.1 a, 

b), disappears.  The plateaus become quantized within 0.05 % of the expected values and 

ρxx becomes zero between the transitions.  
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Figure 4.1 Resistance and Hall-curve for a) ne = 1.0 × 1015 m-2, b) ne = 1.3 × 1015 m-2, 

c) ne = 1.8 × 1015 m-2 and d) ne = 2.0 × 1015 m-2. The measurement current is 10 nA. T 

= 100 mK. 

 

 

4.2.1 Determining inhomogeneities 
 
A great obstacle in probing the quantum critical behavior is the inhomogeneous nature of 

the Hall bar. Inhomogeneities in the electron density of the 2DEG are mainly a result of the 

growth process of the wafer. The simplest approach to the inhomogeneity problem is a 

gradient in the electron density throughout the Hall bar. The most harmful consequence of 

inhomogeneities is that transitions take place at different values of the magnetic field 
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throughout the 2DEG and make an accurate determination of the scaling behavior 

impossible. This is especially true for the PP transitions [11]. It is important therefore to be 

able to make an estimate of the magnitude of this gradient in the electron density. The 

common way of doing this is to measure the Hall resistance at two places of the Hall-bar. 

The shift in curves then tells us how large this gradient is. Unfortunately only one pair of 

Hall contacts and one pair of resistance contacts were present on the Hall-bar. Another way 

of estimating the magnitude of the gradient is making use of reflection symmetry [11,13]. 

Reflection symmetry states that the longitudinal resistances measured at both sides of the 

Hall bar interchange by reversing the polarity of the magnetic field.  

                                                                                                              (4.4) )()( BRBR b
xx

t
xx −=

where t and b stand for top and bottom respectively. So having only one pair of resistance 

contacts but measuring for reversed field also, gives us the data for the opposite pair of 

resistance contacts. It is shown that the longitudinal resistances at the top and bottom of the 

Hall bar are given by [13] 
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From Eq. (4.2) and (4.3) it follows that 

                                                Rt
xx (B) − Rt

xx (−B) = αL                                                 (4.8) 

Combining Eq. (4.4) and (4.5) gives 
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δρ)()(                                         (4.9) 

Zero coordinates (x, y) are taken at the center of the Hall bar. Eq. (4.9) tells us that the 

difference of Rxx for both field polarities is equal to the slope of the Hall resistivity times 

the gradient along the total length L of the Hall bar. ρH is the Hall resistivity for the ideal 

case without gradient. Since we do not know this value, we approximate it by 
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Plotting our data versus the filling factor ν for the PP-transition 2     1 and applying Eqs. 

(4.9) and (4.10) gives us the ∆Rxx and δρH/δν  curves for ne = 1.0 and 1.3 × 1015 m-2 (Fig. 

4.2) and ne = 1.8 and 2.0 × 1015 m-2 (Fig. 4.3). 
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Figure 4.2 ∆Rxx for both field polarities (top) and slope of ρH  versus filling factor 
(bottom)  at T = 100 mK for a) ne = 1 × 1015 m-2 and b) ne = 1.3 × 1015 m-2. 

 

Using Eq. 4.9 the ratio of peak values (top/bottom) gives us approximately a gradient of 4.7 

% for the lowest density. Also interesting is to look at the shift of the lower curve with 

respect to the upper curve. In doing so we assume that the Hall transition occurs at a local 

filling factor, while the Rxx transition occurs at some sort of averaged filling factor over the 

whole Hall bar. Twice this shift should give an approximate value for the gradient. In this 

case using 2⋅∆ν/ν also results in a gradient of 4.7 %.  

In Table 4.1 the same results for the other densities are shown. Notice how close the results 

of both methods are. From this it follows that the Hall bar is the most homogeneous at ne = 

1.8 × 1015 m-2. 
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Figure 4.3 ∆Rxx for both field polarities (top) and slope of ρH  (bottom) versus filling 
factor at T = 100 mK  for a) ne = 1.8 × 1015 m-2  and b) ne = 2.0 × 1015 m-2. 

 

The density gradients obtained from the analysis in Figs. 4.2 and 4.3 for the different  

densities are listed in Table 4.1.  

                      Table 4.1 Density gradients for the four different densities 

ne (m-2) 
Gradient (%) 

reflection symmetry 

Gradient (%) 

shift between ∆ Rxx and  δρH/δν curves 

1.0 × 1015 4.7 4.7 

1.3 × 1015  3.0 2.4 

1.8 × 1015  1.4 1.7 

2.0 × 1015 1.8 1.8 

Another way of estimating the gradient is by simulating the PP-transition numerically [11]. 

Since a gradient causes a difference between the  and t
xxR Rxx

b curve, we can simulate a 

transition using the parameters obtained from the experiment (T0,  κ) and vary the gradient 
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until we get a result similar to the experimentally obtained curves. The measured PP 

transitions for the four different densities are presented in Fig. 4.4. Simulations using the 

equations shown in [21] are presented in Fig. 4.5. The gradients here are 2.5 % and 5 %. 

More about simulations will be discussed in section 4.4.  
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Figure 4.4  ρxx at the PP transition 2 → 1 for positive and negative field for a) ne = 1.0 
× 1015 m-2, b)  ne = 1.3 × 1015 m-2, c) ne = 1.8 × 1015 m-2 and d) ne = 2.0 × 1015 m-2. T 
= 100 mK. 

 

1.40 1.45 1.50 1.55 1.6
0.0

0.1

0.2

0.3

0.4 SIMULATIONS

Gradient = 2.5 %

PP 2→ 1

ρ xx
 (h

/e
2 )

ν

a)

RB

RT

 

1.45 1.50 1.55
0.0

0.1

0.2

0.3

0.4

ρ xx
 (h

/e
2 )

ν

Gradient = 5 %
PP 2 →1SIMULATIONS

b)

RB

RT

 

Figure 4.5 Numerical simulation of ρxx at the PP transition 2 → 1 for a) 2.5 % and b) 
5 %. 
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First of all it should be noticed that in both the simulated curves and the measured data the 

transition does not occur at the theoretically expected filling factor of 1.5. The higher the 

gradient, the more the actual critical filling factor deviates. This deviation however, is 

much smaller for the simulated cases than for the measured ones, for comparable gradients. 

For example if we consider ne = 1.8 × 1015 m-2, where the density gradient according to 

reflection symmetry is 1.4 %, the critical filling factor is shifted to 1.43, whereas in the 

simulated case (2.5 %) it is only shifted to 1.49. Now consider the ratio of the maximum 

peak values for the different densities as shown in Table 4.2.            

 
               Table 4.2 Ratio of maximum peak values of Rxx,max (B↑) /Rxx.max (B↓)  
               for the four measured densities and the two simulated gradients. 

ne (m-2) Rxx,max (B↑) /Rxx.max (B↓) 
 

Gradient (%) 
(simulated) 

 
Rxx,max (B↑) /Rxx.max (B↓) 

1.0 × 1015 1.6 2.5 1.2 

1.3 × 1015 1.8 5 2.0 

1.8 × 1015 1.4   

2.0 × 1015 1.6   

 

The ratio Rxx,max (B↑) /Rxx.max (B↓) follows the same trend as seen in the previously 

discussed methods, being the lowest for the third density and then increasing slightly for 

the highest density. From Table 4.2 we can conclude that there is a correspondence 

between simulations and experiment. Summarizing we can say that we have approximated 

the inhomogeneous nature of the 2DEG by a density gradient along the current direction of 

the Hall bar and that we have tried to determine this gradient in three different ways from 

the PP-transition: From reflection symmetry, from the shift in filling factor between the 

transitions of the Hall and longitudinal resistance and by making use of numerical 

simulations. The answers obtained from all three methods correspond with each other. 

 

4.3 The PI-transition  
 
In the previous paragraph we showed curves of magnetotransport data taken on the 2DEG 

before it reached the insulating state. This has been done only for the lowest temperature 

measured (100 mK). We did not consider any temperature dependence of the slope of the 

plateau-plateau transitions of ρH or the width of the peaks of the longitudinal resistance, 
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since in the past it turned out that these transitions are not suited for investigating critical 

behavior. The universal critical behavior is too much affected by sample dependent aspects 

like inhomogeneities in the electron density of the 2DEG. It has also been shown that for 

the PI-transition it is possible to disentangle the universal critical behavior from sample 

dependent aspects [11,12].  In this section we will examine the PI transition for all four 

measured densities.  The resistivity near the critical filling factor νc follows the empirical 

law [11,15,20]:   

         )(/)/ln( 0, Tcxxxx ννρρ ∆−=                                            (4.11) 

where:                                          κν )/()( 00 TTT =                                                            (4.12)           

Figs. 4.6 and 4.7 show the longitudinal resistance near the PI transition on a semi-log plot, 

both as a function of the filling factor and the magnetic field for ne = 1.8 and 2.0 × 1015 m-2. 

By plotting the resistivity in this way we can directly extract )T(0ν  from the slope of the 

curves near νc.  

 

Figure 4.6 The longitudinal resistance in the regime of the PI transition for twelve 
different temperatures: 0.09, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 K as 
a function of filling factor (lower axis) and magnetic field (upper axis). The crossing 
point indicates the location of the PI-transition. The electron density is 1.8 × 1015 m-2. 
I = 10 nA. 
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Figure 4.7 The longitudinal resistance in the regime of the PI-transition for ten 
different temperatures:  0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.1 K as a 
function of filling factor (lower axis) and magnetic field (upper axis). The crossing 
point indicates the location of the PI-transition. The electron density is 2.0 × 1015 m-2, 
I = 10 nA. 
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Data for the lowest two measured densities (1.0 and 1.3 × 1015 m-2) are not shown. The value 

of ρxx,c deviates up to 6% from the ideal value of h/e2. This deviation is explained by 

sample inhomogeneities. Indeed as the density increases and the sample becomes more 

homogeneous, the value of ρxx,c shifts towards its ideal value. Plotting the inverse of the 

slope of the resistivity curves (ν0) in the vicinity of the PI-transition as function of the 

temperature on a log-log plot illustrates its critical behavior. 

In Fig. 4.8 this is shown for four densities. The slopes of the curves are: 0.43 for the lowest 

two and 0.53 for the highest two densities. 

A comparison between the curves that we obtained and the ones obtained by Ponomarenko 

[11] on Hall-bar 3388#1, with a geometrical factor of 5.2 is shown in Fig. 4.9. The values 

of ν0 coincide better for the highest density.  
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Figure 4.8 Temperature dependence of ν0 for four different electron densities.  
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Figure 4.9 Comparison of the Temperature variation of ν0 for sample 3388#1-W and 
3388#1 [2], a) for ne ≈ 1.0 × 1015 m-2, b) for ne = 2.0 × 1015 m-2. The straight lines 
representing slopes of 0.57 and 0.42 are given as a guide to the eye only.  

 

4.4 Simulating the PI-transition 
 

Hall-bars in practice turn out to be non-ideal. This means that in an attempt to measure 

universal properties, like critical exponents, there will always be some unwanted influences 

of sample-dependent (and thus non-universal) aspects. As discussed in section 4.2 one of 

the main disturbing factors in probing critical behavior are so called macroscopic sample 

inhomogeneities. In the simplest approach the inhomogeneity is a density gradient in the 

length direction of the Hall-bar. Making use of numerical simulations we are able to 

determine the influences of these inhomogeneities on the measured critical behavior. For 

the simulations we used software written by L.A. Ponomarenko [11], which allows 
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simulating a gradient in the electron density of the 2DEG. The gradient can be defined both 

in the direction parallel to the current flow (along the Hall bar) or perpendicular to the 

current flow. The Hall bar used in the simulations can be represented as follows: 

 

Figure 4.10 Representation of Hall bar used in numerical simulations. 
 

The dimensions taken for the Hall bar are based on realistic ones. For the ratio between 

length, width and distance between the pair of Hall contacts we used 17:2:3. The 

simulations were done starting for zero gradient and then increasing the gradient between 

the Hall contact pairs in the x-direction up to 30%. The results are shown in Figs. 4.11a-c, 

where the behavior of ρxx is plotted near the PI transition for increasing gradient in the 

electron density. With increasing gradient the crossing point of the resistivity curves 

becomes less well defined.  It spreads out due to shifting of the low temperature curves. 

The same is observed experimentally. The slope determined from the log-log plots on the 

right side starts to deviate from the ‘zero-gradient’ value of 0.58 with increasing gradient. 

This deviation however starts after a relatively high value of the gradient (>10%). As 

shown before [11], it confirms that the PI-transition is much less sensitive for density 

gradient than the PP-transitions. If the gradient exceeds a certain limit, also the resistivity 

values near the PI-transition are distorted.  
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Figure 4.11  Results of numerical simulations a) 10 % gradient in x-direction b) 10 % 
in x-direction and c) 30 % gradient in the x-direction. 

 

 



Critical behavior                                                                                                                                               51 

4.5 Conclusions  
 

• Magnetotransport measurements have been carried out on an InGaAs/GaAs QW at 

four different electron densities tuned by illumination in the range 1.0-2.0×1015 m-2 

in order to study the 2→1 PP and PI transitions.  

• The density gradient in the Hall bar was determined from the 2→1 PP transition 

by the method of “reflection symmetry”. The gradient ranges from 1.4 to 4.7 % for 

the investigated densities.  

• The effect of the density gradient on the magnetotransport data was investigated 

by numerical simulations for the 2→1 PP and PI transition. The results are in good 

agreement with those observed in the experimental data. 

• Scaling of the PI transition was investigated by extracting the temperature 

variation of ν0 from the longitudinal resistance data. The critical exponent κ falls 

in the range 0.43-0.53. The latter value is slightly lower than the value  κ = 0.57 

obtain previously [11] on a narrower Hall bar prepared from the same 

InGaAs/GaAs wafer.  
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 5. Irrelevant critical behavior 
 

 
5.1 Introduction 
 
Having discussed the relevant critical behavior in Chap. 4, we here focus on the irrelevant 

critical behavior and its irrelevant critical exponent. The meaning of the irrelevant critical 

behavior within the context of the scaling theory for the QHE is elaborated in Chap. 2. The 

experimental manifestation of this phenomenon will be discussed in this chapter.  The 

deviations from quantization that we would like to determine in order to probe irrelevant 

critical behavior are of the order of a few percent of the quantized value h/e2 of the ν = 1 

plateau [1,2,3]. For a perfect homogeneous sample these should be easily detectable using 

the appropriate measuring equipment. A discussion of the method used for these 

experiments is found in Chap. 3 of this thesis. However macroscopic sample 

inhomogeneities like gradients and especially contact misalignment thwart the proper 

observation of the deviations from quantization [1]. In this chapter we will discuss the most 

common ways to deal with these sample imperfections. Next we will show the measured 

deviations from quantization obtained with the DC method for three electron densities on 

sample 3388#1-W (ne = 1.3, 1.8 and 2.0 x1015 m-2 ). Then we report the analysis that has 

been performed on the data to extract the irrelevant critical behavior and the corresponding 

critical exponents. The analysis consists mainly of collapsing different data-sets (each data-

set belonging to a different filling factor) onto one single curve, of which the general shape 

follows from the expected power-law behavior. It turns out that after applying a 

temperature dependent shift in filling factor of the measured curves the data-collapse 

improves. Finally we present the flow diagram calculated for the PI transition measured on 

the 2DEG for ne = 1.8 x 1015 m-2. This diagram is compared with experimentally obtained 

flow lines [5]. The evolution of our understanding of the flow diagram will briefly be 

elaborated. 
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5.2 Dealing with sample inhomogeneities and contact misalignment 
 
The core of our task is to probe critical behavior in the quantum Hall regime, or more 

specifically: irrelevant quantum critical behavior in the Hall resistivity nearby the PI-

transition. As a more ambitious task we also want to show that this quantum critical 

behavior is universally valid, meaning that it is sample independent and is obeyed by all 

2DEGs, as long as the sample related criteria for scaling are satisfied. In order to proof 

universality there are different routes: One may take several suitable samples, possibly 

made out of different semiconductor materials, and carry out measurements on all of them. 

One may also take a sample in which the carrier density is tunable. In this case reaching a 

higher density by illuminating the 2DEG with infra-red light at low temperatures creates a 

situation which is equivalent to a different sample. The lack of availability of samples and 

that fact that not all available samples are suitable has limited us to the second option. 

Therefore, all the measurements described in this chapter were performed on an 

InGaAs/GaAs Quantum Well with tunable carrier density. An image of this sample is 

shown in Fig. 3.11 of chapter three. Unfortunately most samples are non-ideal 2-DEGs 

because of macroscopic sample inhomogeneities. This means that the electron density 

throughout the 2DEG is not constant, but varies with place. If we consider the expression 

for the Bc-values where the transitions occur, wereν is the filling factor, e is the electron 

charge and  is the electron density, en

                                                             
ν⋅

⋅
=

e
nhB e

c                                                           (5.1) 

it is clear that an electron density that is not constant throughout the 2DEG will have drastic 

consequences. As result of this the same transition will occur for different values of the 

magnetic field in different parts of the 2DEG. So instead of one filling factor for the whole 

2DEG, we have to deal with a local filling factor: ν(r) = ν0 + νx×x + νy×y. This results from 

an asymmetric growing technique of the semiconductor structure and an inhomogeneous 

freezing in of the impurities responsible for the disorder potential upon cooling down. An 

extended study on sample inhomogeneities can be found in Refs. [1,4]. Another sample 

imperfection we have to deal with is the so called contact misalignment. Due to 

microscopic differences in the electron-density nearby two geometrically perfectly 

opposing contacts, these contacts effectively are slightly misaligned. The main 

consequence of this is an admixture of resistivity components. It has been shown that there 
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are several ways to take care of sample inhomogeneities and contact misalignment [1-4]. 

These different ways and why a specific way has our preference in the case described here 

will be briefly discussed next. The first way to deal with these sample imperfections is the 

stretch-tensor formalism developed by Pruisken [3,4].  According to this an ideal Hall bar 

geometry can be represented as a rectangular shape with sides L × W and a homogeneous 

distribution of carrier density ‘ne’. A non-ideal Hall bar, that is a Hall bar with contact 

misalignment and macroscopic inhomogeneities can be mapped onto the same rectangular 

shape where the y-axis is tilted by an angle θ and where the electron density is spatially 

dependent: ne (x, y ), i.e stretched out. See Fig. 5.1. 

y’ inhomogeneous  y ideal sample sample 

n0 n(x,y) W W   θ 
 

  
  
x   x 

 
It has been shown that any pair of components ρxx, ρxy   measured on a non ideal sample, 

can be expressed in the following way [4]: 

                                                                                              (5.2) )1()0(
0 ' HijHijijij SS ρρερρ ++=

where Hρ  and 0ρ  are the intrinsic transport coefficients.  and  are both odd under 

a change of the polarity in B: 

)0(
Hρ )1(

Hρ

                                                                                     )()( )0()0( BB HH −−= ρρ

                                                                                                       (5.3) )()( )1()1( BB HH −−= ρρ

 

 

 
L L 

Figure 5.1 Schematic representation of the stretch tensor ‘Sij’ Left an ideal sample 
with sides L × W and a homogeneous distribution of carrier density ne. Right an 
inhomogeneous sample with a spatially dependent electron density ne (x,y) and 
contact misalignment that can be represented by the angle θ. 
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The intrinsic transport coefficients as a function of Χ = (T/T0)-κ are: 

)(
0

3

)( XOXeX +−=ρ                                                                                   

                                     (5.4)     ),(),( )1()0( ηρρηρ XX HHH +=

 with                                               = 1,                                 (5.5) )0(
Hρ )()(),( 0

)1( XTXH ρηηρ =

The effects of sample inhomogeneities (density gradients and contact misalignment) are all 

contained in:     
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Now consider that the ρxy data for constant T can be split in a symmetric and an 

antisymmetric part 

                                                                                                          (5.8) s
xyHxy BB ρρρ += )()(

in which is only an admixture of the Rs
xyρ s

xyρ

c

xx component. The  data is taken from a 

different part of the sample than the Rxx data, which is like a global average of the sample 

resistance. In case of macroscopic sample inhomogeneities there will be a noticeable 

difference between the critical fixed point νc obtained from  the Rxx data, and ν~

s
xyρ

 obtained 

from the data (from now on all the parameters obtained from the data will be shown 

with a tilde). If we assume a spatially dependent filling factor ν(r) = ν

s
xyρ

0 + νxx + νyy, than the 

stretch tensor Sij is given by 
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ν2
L

x
where νε x ±=  and  

ν
νε

2
W

yy ±= . These are taken as fixed quantities representing the 

relative uncertainties in the electron density in the x and y directions. From Eqs. (5.6), (5.7) 

and (5.8) it follows that    

                           )~(tan)(tan),( 00
)(0 XXeTB TS

xy

x

ρθρθρ ν
νε

⋅=⋅=                          (5.10) 

where X~  is the local scaling variable 
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c ε
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+
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                                                                                                           (5.13)

  

κε /1
00 )1(~

xTT +=

are the local equivalents of cν  and T0  when there is only a measurable gradient in the x-

direction.  xε can be determined from the experimental data by using the distance between 

the local fixed point ‘ cν~ ’ and the global fixed point ‘ cν ’. A value for tan θ can be obtained 

by plotting 
)(X

S
xy

0

ρ

ρ

ρ
 and than fitting with tanθ exp(X). In the abovementioned we have tried 

to explain how to use the abstract concept of the stretch tensor in order to obtain an idea 

about the contact misalignment and the density gradient in the Hall bar. Another way to 

deal with the inhomogeneities is just to extract all the parameters needed for the data 

analysis from the ‘local’ situation. Instead of using the  data for extracting values like 0

cν , κ and T0  we  use the ρxy
s  data. We have applied both methods. In the final analysis 

however we have chosen for the second method. Reason for this is that in this way we can 

directly extract the ‘local behavior’ of the 2DEG for the small region of interest to us. We 

can do this without the concern of how the inhomogeneity profile of the 2DEG really looks 

like, whether it is a gradient in the x-direction, in the y-direction, in both directions or 

maybe something far more complicated. This in contrast to the first method in which we 

are  bound to the assumption that we are dealing with a linear  variation in the electron 

density, and based on this assumption we try to ‘reconstruct’ the local situation in the 

region of interest. 
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5.3 DC results for three electron densities of the 2DEG 
 
In the course of our experiments the magnetotransport data for three electron densities have 

been examined: 1.3, 1.8 and 2.0 × 1015 m-2.  First we will elaborate the procedure of data 

analysis used for the lowest density. Then we will show the results obtained for all three 

densities. In all the DC measurements described in this chapter the set values for the Delay 

time and the NPLC’s where 350 ms and 15, respectively. The Moving Filter was set to 4 

(see Chap. 3). This corresponds to a time constant of around 4 seconds and a ‘frequency’ of 

around 0.8 Hz. In Fig. 5.2 we show the longitudinal resistance near the PI transition in a 

semi-logarithmic plot:   
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Bc = 10.2 T

0.8 K 

0.2 K
 

 B (T)

ρ xx
 (h

/e
2 )

ν  

Figure 5.2 PI-transition of sample 3388#1-W for the longitudinal resistivity at six 
temperatures (T = 0.2, 0.4, 0.5, 0.6, 0.7 and 0.8 K) in a semi-logarithmic plot as a 
function of  filling factor (lower axis) and magnetic field (upper axis); ne = 1.3x1015  

m-2. The measurement current was 10 nA. 
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Figure 5.3 Temperature dependence of the parameter ν0 in a double logarithmic plot 
of sample 3388#1-W. Both the AC and DC cases are shown. 

 

In Fig. 5.3 we show ν0 as a function of T for both the AC and DC measurements. For this 

density, fitting the data points with a linear fit gives a similar slope for both the AC and DC 

method: 0.43. Note that the critical filling factor for the PI transition νc = 0.53. This value is 

higher than the theoretically expected value of νc = 0.5. The reason for this is the non-zero 

overlap between the Landau levels [1]. Figs. 5.2 and 5.3 reflect the ‘global’ behavior of the 

2DEG. In fact it should be seen as the average behavior over the whole area of the 2DEG 

between the resistivity contacts.  

Due to inhomogeneities local behavior in a specific region of the 2DEG does not need to be 

the same as the global behavior. Since we are interested in the critical behavior of the Hall 

resistivity, our region of interest is the one between two opposite Hall contacts. One way to 

obtain experimental insight in this local region is provided by one of the sample 

imperfections: the contact misalignment. Since ρxy,s is in fact the admixture of the 

longitudinal resistance component in the Hall component (Eq. 5.8 ), it is possible to do the 

same analysis on ρxy,s as we did on ρxx. Fig. 5.4 shows the crossing point of the ρxy,s data in 

a semi-log plot for seven temperatures. Note that the critical filling factor is significantly 

higher than for the ρxx data: νc = 0.6.  Also Bc is lower than for the ρxx- case: B = 9.8 T. This 
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indicates that the electron density between the Hall- contacts is lower than the averaged 

density over the whole 2DEG. From the ρxy,s -curves shown in Fig. 5.4 we  again extract ν0 

and trace ν0 vs. T in Fig. 5.5.    
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Figure 5.4 PI transition for the longitudinal resistivity component measured at the 
Hall contacts (ρxy,s) for seven temperatures in a semi-logarithmic plot (T = 0.5, 0.7, 
0.8, 0.9, 1.0, 1.1 and 1.2 K) as a function of filling factor (lower axis) and magnetic 
field (upper axis). The field polarity is positive. 

 

 

Figure 5.5 νo vs. T for the PI transition of ρxy,
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Fig. 5.5 shows that the slope of the temperature dependence of ν0 for ρxy,s  differs a lot from  

the one found for the ρxx-data (Fig. 4.8). This illustrates clearly how the local 

inhomogeneity situation between the Hall contacts can distort critical behavior. The 

parameter of most interest to us in our further discussion is cν~ , since this is the filling 

factor at which the PI transition occurs for ρH. We recall the scaling functions [2] for the 

critical behavior of ρH at the PI transition: 
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In Fig. 5.6a we show ρH after symmetrizing for both field polarities. Using  
B
ne

⋅
⋅

e
h

=ν  and 

substracting cν~  we can plot ρH versus ∆ν  (Fig. 5.6b). Notice the noisy behavior of the T = 

0.5 K curve. This is because the deviation from quantization is the smallest for this 

temperature, while the diverging of the ρxy,s  for both field polarities is the largest here. This 

gives a very bad signal to noise ratio.  

Eq. 5.15 tells us that the deviation from quantization displays power law behavior. For ∆ν 

= 0 this power law behavior is completely described by the η (T) term. For  ∆ν ≠ 0 this 

power law behavior is the product of η (T) and . The data shown in Fig. 5.6b can be 

plotted in a different way: taking a fixed value for ∆ν and plotting the temperature 

dependence of ρ

)~(0 Xρ

H-1 for this value. This is shown in Fig. 5.7 for seven values of ∆ν.  
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Figure 5.6a Critical behavior of ρH at the PI-transition for T = 0.5, 0.7, 0.8, 0.9, 1.0, 
1.1 and 1.2 K. 
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Figure 5.6b ρH vs.  at T = 0.5, 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 K. 
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Figure 5.7 ρH -1 vs. T for seven values of ∆ν. 
 

 

From Eq. 5.14 it follows that dividing out  from the curves for constant ∆ν in Fig. 

5.7 will give a collapse of the data on

)~(0 Xρ

)(Tη . The parameters )~(0 Xρcν~ 0
~, and T   present in  

are obtained in the following way: cν~  follows from the crossing point of the ρxy,s curves as 

mentioned above. For 0
~T  and κ the following has been done. The data points in Fig. 5.7 

can be seen as seven one dimensional (1D) functions ρH(T) - 1 for different constant values 

of ∆ν. What we can do is map these seven 1D datasets on a 2D data- surface so that a 2D 

function ρH (T,∆ν)-1 describes all the data-points. The function used is 
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where δνc is the deviation from cν~ , that can be temperature dependent. The fit is shown in 

Fig. 5.8.       
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Figure 5.8 two dimensional display of all the data points shown in Fig. 5.7 using Eq. 
5.17.  

 

Important in this method is that we just get one set of the 5 fit parameters. These 

parameters can be considered an optimum based on all the information contained in the 

seven 1D datasets mentioned before.  Using the values for  0
~T  and κ  we can apply the data 

collapse on the data sets in Fig. 5.7.  

The values for T1 and yσ  found after fitting with )(Tη  are 11.8 K and 1.8 resp. These 

values are different than the ones mentioned in Ref. [1] for the same wafer: 4.5 K for T1 and 

2.6 for yσ.  
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Figure 5.9 Collapse of the ρH  data (see Fig. 5.7) onto a single curve η = (ρH - 1)/ρo 
( X~ )  vs. T for different values of ∆ν. T0, κ and δν are taken from a 2D fit like in Fig. 
5.8.  
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Figure 5.10a) The uncorrected situation for the ρxy,s data. We can see a poorly 
defined crossing point and the data show a lack of symmetry around this ‘crossing 
point’. b) The corrected situation. The data is smoothed using the ‘adjacent 
averaging’ procedure in Origin. 
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The ρxy,s data do not show a well defined crossing point as shown in Fig. 5.10a. However, 

this can be obtained by a small temperature dependent shift 0.007 ≤ ∆νc ≤ 0.025 as shown 

in Fig. 5.11b. The shift is the smallest for the highest temperature. 

Also the data around the crossing point are now much more symmetric as is required by the 

condition of particle-hole symmetry [2] 

                                                                                                           (5.18) )()( 1
00 XX −= −ρρ

Repeating the procedure described above using the shifted curves of ρH gives the data 

collapse shown in Fig. 5.11. 
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Figure 5.11  Collapse of the ρH  data (see Fig. 5.7) onto a single curve η = (ρH - 1)/ρo 
( X~ ) vs. T for different values of ∆ν. T0, κ and δν are taken from a 2D fit like in Fig. 
5.8. The original curves of ρH have been given a temperature dependent shift. ne = 1.3 
× 1015 m-2. 

 
For the other two densities the results are shown on the next pages. We will limit ourselves 

here to show the final results only.  
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Figure 5.12 Collapse of the corrected ρH data onto a single curve η = (ρH - 1)/ρo ( X~ ) 
vs. T for different values of ∆ν. T0, κ and δν are taken from the 2D fit. ne = 1.8 × 1015 
m-2. 
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Figure 5.13 Collapse of the corrected ρH data (see Fig. 4.12) onto a single curve η = 
(ρH - 1)/ρo ( X~ ) vs. T for different values of ∆ν. T0, κ and δν are taken from the 2D 
fit. ne = 2.0  × 1015 m-2. 
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Notice that the datacollapse for ne = 2.0 × 1015 m-2 shows more spread than for the previous 

densities. This is because we only could measure until 0.7 K for this density. In this low 

temperature range the effect is smaller and consequently the relative error is bigger. 

 

5.4 Flow diagrams 
 
By plotting σxx versus σxy for the PI transition using the tensor relation 
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we construct the renormalization group flow diagram. Unfortunately, we were not able to 

directly measure the flow lines for T > 1.2 K. However, by making use of the universal 

scaling functions (see chapter 2) 
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with parameters κ, T0, yσ and T1 as obtained from the experiment, we can plot the flow 

diagram up to higher temperatures. This most important diagram is shown in Fig. 5.14. The 

flow lines emerge from the Self Consistent Born Approximation (SCBA) curve [5] near T ≈ 

T1 = 6.5 K [2,3]. The scaling regime is entered below 4.2 K and is depicted by the 

(symmetric) upward flow towards the asymptotic semicircle (T→0) σ0
2 + (σH - 

e2/2h)2 = (e2/2h)2 for the plateau-to-insulator transition.  

The way we understand the complete flow diagram (i.e. displaying both relevant and 

irrelevant critical behavior) and how it should be interpreted has changed drastically since 

the first experimental study of scaling [5]. An early calculation of the flow diagram 

obtained from the dilute instanton gas method can be found in Ref. [6]. The only aspect that 

has remained unaltered in time is the presence of the semicircle for T = 0. This has been 

measured on all types of samples [7], regardless of their quality or even whether they 

displayed scaling properties or not. The only two criteria that need to be met in order to 

obtain a semicircle for the PI transition are a Hall resistance that remains quantized and an 
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exponentially diverging longitudinal resistance. In Fig. 5.14b) we reproduce an early flow 

diagram obtained for the 2→1 plateau-plateau transition [5]. When compared to our 

calculated flow diagram, based on the experimentally obtained parameters for the PI 

transition (sample 3388#1-W at ne = 1.8 x 1015 m-2), the differences are striking. In the early 

results, the trajectory of the flow lines towards the semicircle has been given a wrong 

interpretation. Also the expected particle-hole symmetry, causing the critical point to occur 

at half integer values of σxy was missing.  

 

 

 
 

Figure 5.14 a) Temperature-driven flow lines with 0.01 < T < 4.2 K near the PI 

transition. The experimental values T0 = 202 K, T1 = 6.4 K, κ = 0.53 and yσ = 2.74 

-driven flow lines from T = 
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The differences in the flow diagrams illustrate very well how our understanding of the 

process of scaling has evolved during the last decades. Initially the flow in the temperature 

range 4.2-10 K towards the semicircle in Fig. 5.12b) was attributed to the broadening of the 

Fermi-Dirac distribution with increasing temperature. Also it was thought that in the low-

temperature regime 0.5-4.2K, where thermal broadening is much smaller than the Landau 

level broadening, proper scaling was represented in the flow diagram by the downward 

flow accompanied by a - not understood - decrease of σ0 with temperature. Later, after 

having found experimental evidence for the already theoretically predicted irrelevant 

critical behavior, it turned out that the upward flowing of the conductivity lines towards the 

semicircle does represent genuine scaling behavior. The assumption that this had to be 

attributed to Fermi-Dirac broadening is wrong: Fermi-Dirac broadening does not play a 

significant role in the scaling regime. The major breakthrough in connecting the measured 

diagrams to the theoretically predicted ones, came through the understanding of how 

macroscopic inhomogeneities influence the observation of critical behavior [2,3,4]. It was 

shown [2,3,4] that PP transitions in general are much more sensitive to macroscopic 

sample inhomogeneities than PI transitions and as a result do not give proper flow 

diagrams. Thus only by measuring the PI transition, and considering both relevant and 

irrelevant critical behavior and the effect of sample inhomogeneities, the final flow diagram 

as shown in Fig. 5.14a can be obtained.   

 

5.5 Conclusions 
 
• The irrelevant critical behavior in the Hall resistance ρH near the PI transition was 

measured on an InGaAs/GaAs quantum well for three different electron densities. 

The data are analyzed within the scaling theory using a newly developed data 

collapse procedure. The extracted values for the irrelevant critical exponent yσ  and 

the temperature T1 below which scaling sets in attain similar values for the three 

electron densities as shown in Table 5.1. The value yσ ≈ 2.5  corresponds well with 

the values reported in the literature [1,3].   
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                                                Table 5.1 Value of T1 and yσ for  
                                                     ne = 1.3, 1.8 and 2.0 × 1015 m-2. 
 

 

 

 

 

ne T1  (K) yσ

1.3 x 1015 m-2 6.46 2.48 

1.8 x 1015 m-2 6.42 2.74 

2.0 x 1015 m-2 6.58 2.38 

• In order to obtain a good data collapse it appeared necessary to apply a small 

temperature dependent shift of the data in ν. Applying this shift improves the 

crossing point of the ρxy.s data (Fig. 5.10). The fact that the critical filling factor 

has a small temperature variation underlines the high degree of macroscopic 

inhomogeneities in the sample: the filling factor differs when measured in 

different parts of the sample (compare Figs 5.2 and 5.4). The stretch tensor 

formalism, that assumes a linear variation of the electron density along the Hall 

bar, could not be used to analyze the data. Instead, we have chosen to look directly 

at the region of interest in the Hall bar by making use of the ρxy,s data. 

• The flow diagram of the PI transition has been calculated from the scaling 

functions using the experimental parameters for κ, yσ, T0 and T1 extracted from the 

data collapse. The flow diagram shows all the properties predicted for genuine 

scaling: relevant and irrelevant flow, the location of the critical point (σH, σ0) = 

(½e2/h, ½e2/h) and particle-hole symmetry. The determination of the flow diagram 

was made possible after unraveling and fully understanding the effect of 

macroscopic sample inhomogeneities.   
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6 Magnetotransport and optical properties 

of GaAs/InGaAs/GaAs quantum wells with 

a thin central AlAs barrier 
 

 

6.1 Introduction 
 
In recent years quantum wells with a complex potential profile have become of substantial 

interest. Thin barriers grown in the center of a quantum well and thus forming coupled 

quantum wells can tune the subband structure and in this way allow for desirable optical 

properties. Optical studies with thin AlAs or Al1-xGaxAs barrier layers incorporated in the 

well region demonstrated that the energy spectrum of the two-dimensional electrons could 

be tuned by changing either the barrier thickness or its height [1,2]. Such a tuning is 

utilized, for instance, in infrared photodetectors and lasers [3]. For practical use of quantum 

well structures high electron mobilities are desirable, and therefore it is of paramount 

importance to suppress electron-phonon scattering, which is dominant in modulation doped 

quantum well structures at temperatures above 100 K. Inserting a thin barrier in the 

quantum well that acts as a phonon wall is predicted to reduce the electron-phonon 

scattering. In transport experiments an increase in the electron mobility was observed when 

three AlAs barriers were inserted into a GaAs/AlAs multiple quantum well (QW) [4]. The 

reduction in scattering rate was attributed to the confinement of optical phonons [4], but in 

a theoretical paper [5] the effect was explained by a modulation of the electron states. In 

several theoretical papers [6-9] it has been calculated that the introduction of thin AlAs 

barriers in rectangular QWs leads to suppression of intersubband scattering by optical 

phonons, which in turn enhances the electron mobility. Other theoretical work has argued 

against an observable enhancement of the mobility [10-11]. Clearly consensus is lacking. In 

this chapter we will focus on single- and double sided delta doped GaAs/InGaAs/GaAs 

pseudomorphic quantum wells of different width and doping levels. This chapter is divided 

in two parts that correspond to two different series of measurements. In the first part we 

will report how inserting a thin central AlAs barrier, which acts as a phonon wall, changes 
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both the transport as well as the optical properties of the system [2]. This changing of 

transport and optical properties by the phonon wall is ascribed to the influence it has on the 

electron-optical phonon coupling and how this in turn influences the intra- and inter-

subband electron scattering [3,6,10,11]. Three pairs of samples have been measured. In 

each pair the width of the QW and the doping level are the same. What is different is that 

only one sample of each pair has a central AlAs barrier (Fig. 6.1). We will present the 

magnetotransport data and how the presence of the phonon barrier reveals itself in 

comparing the transport parameters for the two components of each pair. 

Photoluminescence spectra will be shown for all six samples. The results will be compared 

with those of the transport measurements. Later on we will present the results of self-

consistent numerical calculations of the subband structure and envelope wave functions for 

the measured samples [12]. Finally a comparison will be made between transport- and 

photoluminescence data and numerical simulations. The abovementioned experiments and 

simulations pointed out an undesired feature of our GaAs/InGaAs/GaAs structures, namely 

the occurrence of additional V-shaped potential wells coinciding with the regions of the 

delta-doped layers. This feature occurs due to both high doping level by Si at the delta-

doped layers and insertion of the AlAs central barrier. As a consequence the spatial 

distribution of the wave functions has been changed, whereby some have extended over 

both the InGaAs and the delta-doped layer quantum wells and some have become localized 

within the delta-doped layer quantum wells. This feature has drastic consequences for the 

mobility of the structure (due to the change in scattering mechanism) and adds undesired 

phenomena such as parallel conductivity. In order to deal with this problem a new series of 

samples, using the compounds AlGaAs/InGaAs/GaAs, has been grown consisting out of a 

single quantum well with one-sided delta doping in the AlGaAs cladding barrier and its 

counterpart where the dopant layer is additionally confined by two AlAs barriers of 1 nm 

thickness.  As shown with the first series of samples the AlAs barriers are a tool to push the 

energy levels up and reshape the wavefunctions. In this way we should be able to relocate 

the wave-functions in the main quantum well. The parameters extracted from the transport 

data and the results of numerical band-structure calculations will show in how far we have 

succeeded in this.  Finally some suggestions will be made for future experiments.  
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6.2 First series of samples  

 
6.2.1 Sample structure (1) 
 
All samples described in this chapter were grown at the Institute of Ultrahigh Frequency 

Semiconductor Electronics by G.B. Galiev and I.S. Vasil'evskii. The first series of samples 

consists out of pseudomorphic In0.12Ga0.88As quantum wells with and without central AlAs 

barrier, grown on semi-insulating (001) GaAs substrates with the use of molecular-beam 

epitaxy (MBE). The samples consist out of the following layers: a GaAs buffer layer 0.6 

µm thick, a Si δ-doping layer, a GaAs spacer layer 8.5 nm thick. The In0.12Ga0.88As 

quantum well with well widths LQW of 8 or 12 nm, a GaAs spacer layer 8.5 nm thick, an 

upper Si δ-doping layer, and an i-GaAs layer 75 nm thick. The latter was grown to 

eliminate surface potential effects. The structures were covered with a cap layer of Si-

doped GaAs 10 nm thick. The substrate temperature was 510 °C for the pseudomorphic 

QW and 590 °C for the other layers. Samples were prepared with δ-doping layers with Si 

concentrations of 3.2x1012 cm-2 (heavily doped, samples #1 and #2) and 1x1012 cm-2 

(moderately doped, samples #3 - #6). Samples without barrier (#1, #3, #5) and with barrier 

(#2, #4, #6) were prepared.  The barrier consists of three monolayers of AlAs grown in the 

center of the QW. The structural and electro-physical characterization of the samples has 

been reported in Ref. [13]. In order to carry out transport measurements all samples were 

prepared in Hall bar geometry by conventional lithography and wet etching. In order to 

attach current and voltage leads, AuGe/Ni/Au ohmic contact pads were made on the 

samples. The structures are schematically shown in Fig. 6.1. 

 

6.2.2 Transport properties 
 
In Fig. 6.2 the temperature dependence of the sheet resistance measured for T = 4.2-300 K 

for all samples is shown. These curves where measured at the Low Temperature Physics 

Department of the Moscow State University by V.A. Kulbachinskii and co-workers. For 

the heavily doped samples #1 and #2 the resistance attains lower values and has weaker 

temperature dependence than the moderately doped samples (#3 - #6).  The samples #3 and 

#5, with no barrier show metallic behavior from 300 K down to ∼70 K, where the 

resistance decreases approximately linearly with decreasing temperature. 
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(a)   (b)   

Figure 6.1 Schematic sample structure for the In0.12Ga0.88As quantum wells: (a) 
without AlAs-barrier (samples #1,#3 and #5) and (b) with AlAs central barrier  
(samples  #2, #4, #6). The width of the QW is 12 nm for sample #1 and #2 and 8 nm 
for samples #3-#6. 

 
The temperature and magnetic field variation of the resistance below 70 K can be attributed 

to weak localization effects. The insertion of the barrier has a pronounced effect on the 

sheet resistance, notably in the moderately doped samples. In samples #4 and #6 the value 

of the resistance at 4.2 K increases by a factor 3 and 7 compared to samples #3 and #5 

respectively. This large difference in resistance decreases with increasing temperature. The 

resistance values of the single QW sample #5 are smaller than those of sample #3, even 

though the well width is smaller (8 nm compared to 12 nm). This is due to the slightly  

larger carrier concentration in sample #5 (∼ 5 %) as determined by the low temperature 

Hall data (see Table 6.1). The Hall densities nH and Hall mobilities µH were determined at 

temperatures of 4.2, 77 and 300 K for all samples. An overview of the results is presented 

in Table 6.1.  The Hall density nH is derived from the linear part of ρxy according to: 

                                                           
e

Bn
xy

H ρ
−=                                                             (6.1) 

The Hall mobility is derived from: 
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Where ρxy and ρxx are the Hall resistivity and longitudinal resistivity’s of the 2DEG. For the  

heavily doped samples #1 and #2 the Hall density amounts to 2.6-2.7x1012 cm-2 and is 

roughly temperature independent (to within ∼ 10%). Also the mobility is quite low, which 

indicates that ionized impurity scattering is dominant. For the moderately doped single 

QWs (#3 and #5) the temperature variation of nH and µH is consistent with the metallic 

behavior observed in the resistance. The overall increase of the mobility with decreasing 

temperature is attributed to the reduction in the phonon scattering rate. However, in the 

samples with barrier, #4 and #6, the Hall mobility on the whole decreases with decreasing 

temperature. At low temperatures (4.2 K and 77 K) the insertion of the barrier leads to a 

strong reduction of mobility by a factor 3-5, although the Hall density is roughly constant 

or even shows an increase (<20%). 
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Figure 6.2 Temperature dependence of the sheet resistance for the In0.12Ga0.88As 
quantum wells with (#2, #4, #6) and without (#1, #3, #5) the AlAs-central barrier.  
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Table 6.1: Structural and transport parameters (at T = 300 K, 77 K and 4.2 K) of the 
InGaAs QW samples; ‘b’ indicates the presence of the AlAs-barrier. 

 

  T = 300 K    T = 77 K     T = 4.2 K    sample 

 

       # 

  LQW            

 

    nm 

 Nd (Si)  

  

  1012 cm-2

     nH 

1012 cm-2
 

   µH 

cm2/Vs 

    nH 

1012 cm-2

  µH 

cm2/Vs 

    nH 

1012 cm-2

  µH 

cm2/Vs 

         1     12    3.2 2.72 3830 3.0  4700 2.86  3800 

         2     12+b    3.2 2.6 3150 2.33  5420 2.61  3300 

         3     12    1.04 0.54 5740 0.79 18500 0.52 10000 

         4     12+b    1.04 0.42 481 0 0.78  5300 0.57  2070 

         5     8     1.1 0.53 5910 0.76 18700 0.59  7980 

         6     8 + b    1.1 0.50 4000 0.87  3570 0.47  1520 

 
Magnetotransport data 
 
The longitudinal- and Hall resistance has been measured for all the samples up to 12 T in 

the temperature range of 0.25-4.2 K using the lock-in technique. In Figs. 6.3a-f, we present 

the results obtained for samples #1 to #6 respectively. In the heavily doped samples #1 and 

#2, the overall behaviour of the longitudinal resistance shows positive quadratic field 

dependence. The longitudinal component of samples #3-#6 exhibits a negative linear 

magnetoresistance, which is indicative of weak localization in low-density two-dimensional 

semiconductor structures. Samples #1-#5 display pronounced Shubnikov - de Haas (SdH) 

oscillations. After substracting the background and performing a Fast Fourier Transform on 

the SdH oscillations as function of 1/B we obtain the frequencies of the oscillations.  Every 

frequency (f) corresponds to a (partially) filled subband. Making use of the relation [14] 

                                                    
Th

ene
1.2= ,                                                                  (6.3) 

where T is the period of the SdH-oscillations in the ρxx vs. 1/B plot, we can relate the 

frequencies to the electron density of the respective subband. Usually only subbands with a 

high quantum mobility are visible in the SdH oscillations. The subband densities obtained 

in this way are shown in Fig. 6.3. For samples #1-#5 only one frequency peak is observed, 

which means that the SdH-oscillations correspond to one subband. For sample #6 no clear 
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frequency is present in the FFT, which is due to the low mobility (see Table 6.1) and the 

long oscillation period. In the heavily doped samples #1 and #2 the SdH density decreases 

from 1.35x1012 cm-2 to 0.63x1012 cm-2 due to barrier insertion. This will be explained in 

section 6.2.6. The SdH density approaches the Hall density in the moderately doped 

samples #3-#6, but is much lower than the Hall density for the heavily doped samples #1-

#2, especially for sample #2, indicating that several subbands are populated.  

Quantum mobilities were determined from the envelope of the SdH-oscillations [15]. For 

the moderately doped samples the SdH- and Hall densities are comparable, indicating that 

transport is dominated by one high mobility subband. The Hall resistance (Rxy) is the most 

pronounced in the samples without barrier (odd numbers) because of the higher mobility. In 

samples #3-#6 we observe the quantum Hall effect regime with the integer plateaus 

corresponding to the filling factors ν = 2 and 4. The Landau Levels are non-spin split in 

this region of the magnetic field. At these integer filling factors Rxx=0, which demonstrates  

the absence of parallel conduction. In samples #1 and #2 parallel conduction is obviously 

present and hampers the observation of the QHE.   

 

6.2.3 Photoluminescence 
 
Photoluminescence (PL) measurements have been carried out on all six samples. The 

corresponding spectra at T = 77 K are shown in Fig. 6.5. These curves where measured at 

the Low Temperature Physics Department of the Moscow State University by V.A. 

Kulbachinskii and co-workers. The spectra of all six samples exhibit a maximum in the 

energy range 1.35-1.47 eV, which is below the transition energy in bulk GaAs (1.508 eV). 

Notice that insertion of the barrier leads to a significant upward shift of the peaks in the 

order of 0.05 eV, without a substantial decrease of the PL intensity. The peaks for the 

single QWs (#1, #3, #5) are relatively broad and asymmetric with respect to the peaks for 

the coupled QWs. This indicates that the spectra of the single QWs are composed of several 

peaks with closely spaced subband energies. The samples with barrier do not dispay any 

additional transitions. This is attributed to the decreasing energy differences between the 

subbands due to the barrier. These energy gaps between the two electron subbands become 

so small that photoluminescence measurements cannot resolve the different transitions. 

Also note that for the single QW samples #1 and #3, which have the same well width but 
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Figure 6.3 a)-f) Magnetotransport curves for the samples #1- #6 at T = 0.25 K. 

different doping levels, the transition energies differ slightly (by 0.02 eV). After insertion 

of the barrier this energy difference disappears. 
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Figure 6.4 Fast Fourier spectra of the Shubnikov - de Haas oscillations for samples 
#1-#5 at T = 0.25K. The horizontal axis has been rescaled using Eq. 6.3 to show the 
electron-density obtained from the FFT.  
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Figure 6.5 Photoluminescence spectra measured at T = 77 K for the In0.12Ga0.88As 
quantum wells with AlAs barrier (#2, #4, #6) and without (#1, #3, #5). 

 

6.2.4 Subband structure and wave function calculations 
 
The conduction band profile and the subband structure and energy levels were calculated 

for all the structures by solving the Schrödinger and Poisson equations self consistently 

[12]. The width of the δ-doping layers has been taken 5 nm [16]. The results of these 

calculations for all six samples are presented in Fig. 6.6. 
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 Figure 6.6 Calculated conduction band profiles, electron wave functions and 
 subband energy levels for samples #1- #6.   
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Comparing the conduction band profile of the heavily doped samples (#1 and #2) and the 

moderately doped (#3-#6) we notice an important difference. In the heavily doped samples 

the δ-doped layers form additional V-shaped quantum wells almost of the same depth as 

the InGaAs QW. In sample #1 the ground state wavefunction Ψ0 with energy E0 is 

predominantly situated in the InGaAs QW, but partially penetrates the V-shaped QWs.  

The wavefunctions Ψ1 and Ψ2 are mainly confined in the V-shaped QWs and results in two 

decoupled subbands labeled E1 and E2. Insertion of the AlAs barrier (sample #2) causes a 

tunnel splitting of the central QW state Ψ0  into the wavefunctions Ψ2  and Ψ3  and an 

upward shift of the subband energies E2 and E3 (before E0). Hence the central QW states are 

no longer the ground state.  The wave functions in the V-shaped QWs (Ψ0 and Ψ1) are less 

affected by the insertion of the barrier. Since wavefunction Ψ2 and Ψ3 are spread over the 

central QW and the V-shaped QWs, insertion of the barrier causes an increase of the 

electron density in the area of the V-shaped QWs and a decrease of the electron density in 

the area of the central QW. In the moderately doped QWs (#3 and #5) the V-shaped δ-layer 

QWs are significantly weaker. The conduction band profile is asymmetric. The ground 

state wavefunction is confined into the QW. As for the excited states, only states formed in 

the deeper V-shaped QW are below the Fermi energy. We observe that for sample #3 the 

ground state energy level E0 lies below the deeper V-shaped QW, meaning that the 

electrons of the ground state subband are mainly confined in the central QW.  Insertion of 

the AlAs barrier leads again to a redistribution of the wavefunction Ψ0 towards the V-

shaped QW. A similar redistribution of the wavefunction after insertion of the barrier can 

also be seen in samples #5 and #6.  

 

6.2.5 Comparison of transport measurements, PL and calculations 
 

The predicted upward shift in energy levels is most clearly seen in the PL data where the 

energy shift is in the order of 0.05 eV. The transport measurements reveal a slightly more 

complicated situation. For the heavily doped sample #1 the electron density of the high 

mobility subband, associated with the central QW, indeed decreases considerably: from 

1.35x10-12 cm-2 to 0.63x10-12 cm-2 (Fig. 6.4). However, in the moderately doped sample #3 

the electron density decreases only by 10% after barrier insertion (Fig. 6.4). From the band 

structure calculations it becomes clear that there is a strong influence of the δ-doped layers, 

which act as V-shaped QWs. For sample #3 it means that insertion of the barrier causes the 
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central wavefunction ψ0 to delocalize and to form a hybrid state occupying both the central 

QW and the V shaped QW.  From the calculations (Fig. 6.7) it follows that the groundstate 

energy E0 shifts only slightly after insertion of the barrier (<0.005 eV). In fact the 

hybridization of the wavefunction over the central QW and the V shaped QW is equivalent 

to an enlargement of the QW. This causes the energy-shift to be smaller than expected. 

This calculated shift in energy level of the ground state is much smaller than the measured 

PL shift of 0.05 eV, but the shift in the photoluminescence data is also due to the shift in 

hole subband energy. The hybridization of the wave function causes also a decrease in 

mobility (see Table 6.1). This is because the scattering mechanism changes from phonon 

scattering (dominant in the central QW) to ionized impurity scattering (dominant in the V-

shaped QWs). In case of the narrowest QW (samples #5 and #6) this shift of the 

wavefunction to the V-shaped QW is the most drastic which results in sample #6 having 

the lowest mobility. Notice that the transport mobility of sample #1 hardly decreases after 

barrier insertion (for T = 77 K it even increases). This can be explained from the 

bandstructure calculations. We see that ψ0 is hybridized into ψ2 and ψ3. The corresponding 

energy level E0 is split and shifted upward drastically. The expected decrease in mobility 

does not occur since the V-shaped QWs are already occupied by ψ0 and ψ1. These 

wavefunctions provide effective screening from the ionized impurity potential, so the 

mobility in the third subband stays high.  From this we can conclude that the observed 

frequency in the SdH oscillations of sample #2 is attributed to the third hybrid subband. So 

far we have encountered the undesired effects of the δ-doped layer potential wells. There 

are several ways to deal with this. One way would be to make the central QW much deeper 

than the V-shaped QW, so that the wavefunctions are only localized in the central QW. In 

practice this is difficult to realize, since a material has to be found with a similar lattice 

constant as GaAs. One can also increase the cladding barrier height by using an AlxGa1-xAs 

compound layer. Another way is to make use of the same method described above: 

Inserting AlAs barriers around the δ-doped layers in order to shift the energy levels upward 

and thus the wavefunctions out of the V-shaped QW. The last method has been adapted, 

together with the use of an AlxGa1-xAs compound layer as cladding barrier, and samples 

with two AlAs-layers of one nm in width surrounding the δ doped layers have been grown. 

The results obtained from these samples will be presented in the next sections. 
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6.3 Second series of samples 
6.3.1 Sample structure (2) 

The second series of sample structures was grown in order to find out if the effects of the 

V-shaped QW at the height of the δ doped layer(s) can be neutralized. Central in these new 

structures is a pseudomorphic Al0.22Ga0.78As/In0.2Ga0.8As/Al0.22Ga0.78As quantum well. 

These six samples can be again divided in three pairs. In the first pair a single quantum well 

with one-side δ-doping is compared with the same structure, but with two additional AlAs 

barriers of one nm in width around the Si δ-doped layer (samples #416 and #417). The 

second pair is similar, only with a lower doping level (samples #440 and #444). The last 

two samples are double-sided δ-doped single quantum wells that differ in doping level 

No additional AlAs barriers are added here (Fig. 6.7).  
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The reason for adding two AlAs barriers surrounding the dopant layer (samples #417, 

#440) is that some separation is needed between the Si-donors and the AlAs layer, in order 

to prevent formation of DX-centers which would trap part of the donor electrons.  

 

6.3.2 Transport data and band-structure calculation  
 
Let us consider the first pair of samples (#416, #417). The transport data are presented in 

Figs. 6.9 and 6.10 below. 
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                Figure 6.9 Hall- and longitudinal resistivity   Figure 6.10 Hall- and longitudinal resistivity  
                for #416 at temperatures of 0.25 K and 4.1.   for #417 at temperatures of 0.25 K and 4.1K.        

 
In sample #416 the highest plateau corresponds to filling factor ν = 6. In sample #417 the 

highest plateau corresponds to ν = 4. The SdH oscillations for both samples are well 

pronounced. The SdH and Hall densities for all samples are shown in Table 6.2. For both 

samples #416 and #417 nSdH and nH coincide. This indicates that only one subband is filled. 

The decrease of both nSdH and nH after barrier insertion can be attributed to the previous 

mentioned DX centers formation due to the AlAs atoms, which trap part of the dopant 

electrons. Next we consider the subband structure calculation for both samples. 
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Figure 6.11 Subband structure and wavefunctions for a) #416 and b) for #417. 
 

For sample #416 we see a wave function mainly confined to the V shaped QW (ψ1), and a 

hybridized wavefunction (ψ2). Inserting the AlAs barriers reconstructs the wavefunctions  

(Fig. 6.11b). The wavefunction  ψ1 is now fully confined to the QW together with ψ0. The 

wavefunction ψ2 is also reconstructed. The shift in energy levels after barrier insertion is 

minimal. However in both cases only one subband lies below the Fermi level.  
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Now let us consider sample pair #440 and #444. The transport data are shown in Figs. 6.12 

and 6.13. 
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Figure 6.12 Hall- and longitudinal resistivity 
for #444 at T = 0.25 K and 4.1 K. 

Figure 6.13 Hall- and longitudinal resistivity for 
#440 at T = 0.25 and 4.1 K.    

 

For sample #444 both the electron density (nH) and transport mobility are low (see Table 

6.2), resulting in a very weak presence of SdH oscillations. The slope of the linear part of 

the Hall resistance varies with temperature, which means there is a temperature dependence 

of the electron density. So for this sample either doping has been insufficient, or the DX-

centers formation immobilizes a significant part of the electrons. A suggestion to overcome 

the second feature could be to illuminate the sample. In Fig. 6.14 we show the band 

structure of both samples #440 and #444. 

 

Again in both samples there is only one subband below the Fermi level. The subband 

electron concentration has been determined in the usual way of substracting a background 

from the SdH-oscillations, plotting the result vs 1/B and performing a FFT. The results of 

the Fourier transforms are shown in Fig. 6.15. For the double sided δ-doped samples we 

obtain the transport-data shown in   Figs. 6.16a) and b). 
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Figure 6.14 Subband structure and wavefunctions for a) #444 and b) for #440.  
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Figure 6.15 Fast Fourier spectra of the SdH oscillations for a) samples #416, #417, 
#444, #440, b) #397 and # 407 at T = 4.1 K. The horizontal axis has been rescaled to 
show the electron density using Eq. 6.3. 
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Figure 6.16a Hall- and longitudinal 
resistivity for #397 at T = 0.25 K and 4.1 K.   

  Figure 6.16b Hall- and longitudinal  
  resistivity for #407 at T = 0.25 and 4.1 K. 

a)  b) 

 
SdH oscillations are very well pronounced in both samples. Now consider the subband 

structure shown in Fig. 6.17.  
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Figure 6.17a Subband structure and 
wavefunctions for  #407. 

Figure 6.17b Subband structure 
and wavefunctions  for #397. 

 
The addition of a second dopant layer indeed leads to a more symmetric QW. For both 

samples the second subband ψ1 is close to the population edge. Since #397 has a higher 

doping level, the second subband is slightly filled by electrons. For sample #407 the second 

subband is already depopulated. This depopulation of the second subband in sample #407 

explains nSdH and nH being similar for this sample. 

 
Table 6.2: Doping level and transport parameters at T = 4.1 K for  
samples #416, #417, #444, #440, #397 and #407. 

 

 

 

 

 

 

 

Sample # Doping (cm-2) nH (1012 cm-2
 ) µH  (cm2/(Vs)) nSdH (1012 cm-2) 

416 5.9 x 1012 1.32 25880 1.31 

417 5.9 x 1012 1.16 23100 1.16 

444 5.4 x 1012 0.4 28790 0.4 

440 5.4 x 1012 1.02 2310 1.0 

397 6.3 x 1012 2.37 18364 2.25 

407 5.7 x 1012 2.37 25708 2.37 

Summarizing, for this second series of samples we can say that the main effect we hoped to 

observe after the insertion of the additional AlAs barriers in the V-shaped quantum wells 



                                                                                                                                                 Chapter 6 94 

does not show up in the data and calculations. Ideally, what we would like to see is the 

occurrence of parallel conduction in the V-shaped quantum well, for the samples without 

barriers. This parallel conduction should disappear after insertion of the barriers, since the 

energy levels will shift and the wavefunctions become reconstructed and should become 

fully localized in the main quantum well. Another expected effect of the barrier would be 

the increased transport mobility in the sample. This is due to the change in scattering 

mechanism (from ionized impurity scattering to phonon scattering). The reason for not 

observing this is that in all four samples with additional AlAs-barriers (# 416, #417, #444 

and #440) the electron density is not high enough to have more than one subband filled. 

Only the lowest subband is filled, of which in all four cases the energy level lies below that 

of the V-shaped quantum wells (see Figs. 6.11 and 6.14). We do observe a reconstruction 

of ψ2 in sample 417 (Fig. 6.11b). However this effect does not influence the transport data, 

since this subband is empty. Suggested future attempts, in order to show the uplifting of the 

energy-levels by barrier insertion, leading to reshaping the wavefunctions and re-localizing 

them in the central QW, could consist in trying to obtain samples with higher electron 

concentration. This can be achieved by illuminating the sample after cooling down, to use a 

gate electrode in order to fill the V-shaped quantum well or by growing sample structures 

with higher doping levels. 

 

6.4 Conclusions 
 
For the first series of samples measured, all three methods used, magnetotransport, 

photoluminescence and calculation of the bandstructure, reveal that insertion of a thin 

central AlAs barrier influences the spatial distribution of the electron wave functions and 

causes an upward shift of the corresponding energy levels. Since the delta doped layers 

themselves cause V-shaped quantum wells, the wavefunctions reshape into hybrid states 

spread over the main quantum well and the V-shaped δ doped layers. Because of this 

‘spread’ of the wavefunctions, the dominant scattering mechanism changes from phonon 

scattering into ionized impurity scattering. This results in the lowering of the transport 

mobility.  In the heavily doped samples (#1 and #2), the subband responsible for transport 

is effectively screened from this ionized impurity scattering by the electron subbands fully 

localized in the V-shaped quantum wells.   Since these V shaped quantum wells hinder the 

original goal of our experiments, a second series of samples has been grown. The reasoning 
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behind these is that the same technique used in the first series of samples to shift the energy 

levels and reshape the wavefunctions (namely the central AlAs barrier), this time used in 

the V shaped δ layer quantum wells, should be able to reshape the wavefunctions in such a 

way that they become localized only in the quantum well. Calculations of the 

bandstructures show that this in principle should be possible. Unfortunately the electron 

density in the actual samples was not high enough to obtain convincing evidence for this. In 

future attempts to determine the effect of AlAs barriers on the energy levels of the 

subbands and the shape of the wavefunctions, we strongly recommend that samples with a 

higher electron density should be used.  
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7. Effect of tilted magnetic field on  
InxGa1- xAs/GaAs bilayer quantum well    
with large Landé g-factor 
 
 

7.1 Introduction 
 
Whereas the single quantum well (SQW) is considered a standard topic in condensed 

matter physics, this is not the case for the double quantum well (DQW). Research on 

DQWs has been pioneered by Boebinger et al. [1,2,3] and still new facets of it are being 

discovered and explored today. The DQW adds several new dimensions to the physics 

describing the SQW. One is the existence of collective interlayer modes [4], due to inter-

particle interactions between the layers. These interactions can be regulated by the distance 

between the quantum wells or by applying a magnetic field parallel to the DQW (B||). 

Another is the additional degree of freedom that an electron has (in which of both wells is 

it?), usually called the isospin or pseudospin [5]. Magnetotransport studies disclose relevant 

information about the subband structure in DQWs and how this structure is influenced by a 

magnetic field component parallel to the DQW. The magnetoresistane picture of the DQW 

is more complicated than for the SQW, since we have to consider not one Landau level fan, 

but two overlapping ones. This is due to the symmetric-antisymmetric splitting of the 

subband also called tunneling gap [6,7]. Most of the research on DQWs has been 

performed on GaAs/AlGaAs heterosystems having an optimal lattice match between the 

compounds and giving high mobilities. The biggest drawback of GaAs is its small Landé g-

factor (⎪g⎪=0.44). The spin splitting observed in these types of DQWs is more than an 

order of magnitude enhanced at local magnetic fields because of exchange-correlations. 

This has been motivation enough for us to switch to a new heterosystem. In this chapter we 

will present magnetotransport data taken on an InxGa1-xAs/GaAs heterosystem. The much 

bigger (positive) bulk value of the g-factor for InGaAs (g ≈ 3) leads to a more stable 

behavior of the quantum magnetotransport and sheds a new light on the spin-splittings and 

its consequences in DQWs [8]. The measurements have been repeated for three different 

electron densities. The density has been increased by illuminating the sample with an 



                                                                                                                                                 Chapter 7 98 

infrared LED using the same procedure as described in Chap. 4. Again increasing the 

density meant an improvement of the data. Several peculiarities have been observed in the 

data like the damping of the ν = 3 minimum and local transformations of resistance peaks 

with increasing B||. So far only the suppression of the ν = 1 state was known [9]. We will try 

to explain these peculiarities from calculated Landau level fans. We will also present data 

taken on a InxGa1-xAs/GaAs - SQW and observe that in this case the above mentioned 

peculiarities are absent, meaning that they can only be explained by the unique DQW-

properties. Finally a curious phenomenon of different nature that showed up in our 

measurements will be mentioned.  

 
7.2 Theoretical background 
 
The most important consequence of splitting a SQW into a DQW by barrier insertion is the 

splitting of an energy level in the SQW into two energy levels for the DQW: the symmetric 

state and the anti-symmetric state (we assume that only one subband lies below the Fermi 

level). This splitting leads to the tunneling gap (∆SAS) and is dependent on the width of the 

barrier (See Fig. 7.1). So by changing the barrier width one can tune the magnitude of ∆SAS 

[10].   

EA

  

        Figure 7.1 Splitting of the lowest energy subband into 
symmetric and an anti-symmetric subband after barrier 
insertion. 

 
This subband splitting can also be represented in k - space. Below (Fig. 7.2) we see the 

splitting of the energy dispersion surface for a parallel magnetic field component (B||) 

equals to zero. 

Es

∆SAS E0 

dW dB dwdw
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 Figure 7.2 Splitting of the energy dispersion surface in k-space as a consequence of 
barrier insertion. 

 

One has to keep in mind that as long as both subbands (ES and EA) are below the Fermi-

level, tunneling between the quantum wells happens via both of the subbands. One can say 

that the quantum wells are connected by two channels. Central to the work presented in this 

chapter is the effect of a parallel field component on the subband structure and its 

subsequent effect on the magnetotransport. Let us first look at the effect on the energy 

dispersion paraboloids (Fig. 7.3). 

What we observe in Fig. 7.3a) is that under influence of B|| the energy dispersion 

paraboloids display an opposite shift in the ky – direction. This leads to an anticrossing of 

the two surfaces resulting in an inner subband, also called “the lens”, and an outer subband, 

due to its shape also referred to as “the peanut” [11]. Between the lowest point of the lens 

and the saddle point visible in the peanut an energy gap appears. This constitutes the   

tunneling gap. The electron orbits are determined by the crossing of the energy subbands 

with the Fermi-surface. From Fig. 7.3b) it becomes clear that we can distinguish between 

three different situations. In the lowest image B|| = 0. Here both subbands are below the 

Fermi level, both subbands occupy both quantum wells and tunneling can happen via both 

subbands. In the middle image the lens is above the Fermi level. Still the Fermi level is 

within the tunneling gap and tunneling can occur via the peanut.  Both quantum wells are 

still coupled. In the upper image the Fermi level lies below the tunneling gap. 
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Figure 7.3 a) Effect of parallel field component on energy dispersion surfaces of Es and 
EA. b) vertical cross-section of the energy dispersion paraboloids under influence of an 
increasing parallel magnetic field component.  
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The effective orbit is now reduced from a peanut to two separate circular orbits (Fermi 

level lies also below the saddle point) and the quantum wells are now decoupled. Tunneling 

becomes impossible. In trying to understand this process of decoupling, just by picturing 

single electrons, it might be helpful to think of the following. Just imagine an electron 

tunneling from one quantum well to the other. An increasing B|| will cause a Lorentz force 

that works perpendicular on the pathway of the electron, thus making it difficult for the 

electron to reach the other well. As  B|| further increases the electron gets more and more 

hindered in making the crossing and finally becomes localized in one of the quantum wells.  

The energy dispersion paraboloids mentioned above can be described by the following 

formula [3]: 
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Where Bx = B||, d is the interlayer distance, ES and EA are the edges of the two subbands 

with respect to the Fermi level and m = 0.058 m0 is the effective electron mass. 1 and 2 as 

subscripts of E indicate the symmetric and anti-symmetric subband, one of which is 

calculated by adding the last component of Eq. 7.1 and the other by substracting the same 

component.  

As usual the perpendicular component of the magnetic field (B⊥) will result in Landau 

quantization of both of the subbands. In a quasi-classical way this can be calculated as 

follows. 

                                                                                                                                           (7.2)                   ,...2,1,0(4/,(( 2 =+=≡ ∫ NkN π ),
2
1)) ⊥ N

h
eBdkkEE yyMxM

 

Here NM (E) is the number of states within the area of the EM projection to the (kx, ky) - 

plane. The integral taken is the contour integral of Eq. 7.1 where kx is expressed as a 

function of EM and ky. The component between brackets indicates the Landau level number.  

The Landau quantization of the energy dispersion paraboloid is shown in Fig.7.4. This 

Landau quantization occurs for both of the subbands: the lens and the peanut. 

 

 

Figure 7.4 Landau quantization of the energy dispersion paraboloid under influence 
of a perpendicular magnetic field. Each sector on the (kx, ky)-plane represents a 
Landau level and contains an equal number of states: eBz / h.  
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After calculating the Landau level splitting using Eq. 7.1 and 7.2, the spin splitting of the 

Landau levels can be added using 

                                                            Bg Bµ*

2
1±                                                             (7.3) 

where g* is the Landé g-factor, µB is the Bohr magneton and B is the total magnetic field. 

An example of the evolution of the Landau levels under an increasing magnetic field for a 

DQW is shown below. The three relevant energy gaps are displayed here.    

 

 

Figure 7.5 Landau level fan for a DQW. Notice the three different energy-gaps present. The 
tunneling gap (∆SAS), the cyclotron splitting (ħωc ) and the spin splitting (g*µBB) [1].   

 

The spin-splitting (g*µBB) increases with increasing total magnetic field.  The tunneling 

gap (∆SAS) can be influenced by B||, the cyclotron splitting (ħωc) is influenced only by B⊥.  

 

7.3 Experimental aspects.  
 
Having to measure magnetotransport in a DQW under a tilted magnetic field also adds a 

new dimension to the experimental setup. It means that one should be able to rotate the 

sample with respect to the magnetic field and be able to cover the necessary angular range. 

All this should be done with a certain angular resolution and accuracy. As one can easily 

picture, this will create additional problems to the wiring of the sample and thermally 

connecting it to that part of the setup of which the temperature can be regulated. In our case 

this will be the mixing chamber of the dilution refrigerator. The rotation aspect has been 

dealt with by mounting a so called Swedish rotator to the mixing chamber (Fig. 7.6).     
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Figure 7.6 Sample holder with sample mounted inside the cup of the Swedish rotator. 
This cup can be rotated 270 degrees with respect to the initial position shown here. 
This can be done with a resolution of 0.2 degree.  

 

With the aid of an electrical control system the cup of the Swedish rotator visible in Fig. 

7.6 can be rotated 270 degrees with respect to the initial position shown. This can be done 

with a resolution of 0.2 degrees and an accuracy of the same value. The cup is made of a 

synthetic material to prevent eddy-current generation due to the changing magnetic field. 

Thermally connecting the sample holder with the mixing chamber has been done by a 

bundle of very flexible thin copper wires. This bundle of wires had to be thick enough to 

create a proper heat transfer and flexible enough to resist the torsion generated by the 

Swedish rotator. Both conditions where met by using so called “Lytze-wire”. The cup 

offered enough possibilities to put all the wiring through. Having this initial conditions one 

should be able to probe the whole (ρxx,xy, B||, B⊥ ) surface, where the magnitude of  B|| and 

B⊥ depend on the total magnetic field that one’s setup can reach. An example of such a 

surface is given in Fig. 7.7 for ρxx. Now there are two ways of doing the measurements. In 

the first one the magnetic field is fixed and the sample is rotated continuously. In the 

second one the angle is fixed and the magnetic field is swept continuously. The initial plan 

included the first option, since this allows one to get much more data points of the (ρ, B||, B⊥ 

) surface in the same amount of time (it takes less time to rotate the sample over and over, 

than to sweep the magnetic field over and over at a reasonable sweep rate). We had to abort 
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this initial plan however due to an unexpected factor. Rotating the sample at a reasonable 

rate caused a heating of the sample of up to 5 K above set temperature.      

 
                       

 

Figure 7.7 (ρxx, B||, B⊥ ) surface measured with the technique described before, where 
the maximum total field is 9 T [12]. 

 

So finally a set of fixed angles has been determined and for each angle the magnetic field 

has been swept up to 16 T. The angles where chosen in such a way as to probe the most 

relevant features of the (ρ, B||, B⊥ ) - surface. 0° is defined as the Hall bar being 

perpendicular to the magnetic field and for 90° the Hall bar is parallel to the magnetic field. 

The resistivities were measured using lock-in amplification. Next to the sample an infrared 

LED has been mounted enabling us to illuminate the sample and increase the electron 

density.  

 

7.4 Double quantum well: results 
 
The experiments described in this section where done on an InxGa1-xAs/GaAs DQW, where 

x = 0.2. The quantum wells are 5 nm in width and the barrier is 10 nm wide. The 

heterostructure has been symmetrically doped in both GaAs surroundings with 19nm 
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spacers. The electron density in the DQW can be tuned by illuminating the Hall bar. In the 

dark (without illumination) ne = 2.3 × 1015 m-2. This sample has been named: 3982. The 

sample is the same as in Ref. [12].  The energy profile is shown in Fig. 7.8. 

 

 

Figure 7.8 Energy profile of DQW, sample 3982. 
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We observe the symmetric and anti-symmetric subbands. The lowest energy level belongs 

to the symmetric subband. As common for Hallbars with tunable electron density, the 

quality of the data improves with improving density. A drawback is that the transitions will 

occur at higher magnetic fields for the higher densities, so the highest transitions cannot be 

studied for increasing tilt of the sample. On the other hand the lower transitions will 

become more pronounced and can be studied in more detail.  The measurements where 

taken at a set temperature of 50 mK. The current used was 5 nA. In Fig. 7.9 the ρxx - data is 

presented for the lowest density measured for various (increasing) angles, which 

corresponds to increasing B||. For clarity the curves have been shifted vertically with respect 

to each other. 
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Figure 7.9 ρxx – data for several tilts of the Hallbar with respect to the magnetic field. 
The lowest curve is taken for the sample in perpendicular position with respect to the 
magnetic field. The highest is taken at an angle of 78.1°. ne = 2.3 × 1015 m-2

0 2 4 6 8 10 12 14 16
0

50

100

150

200

ν=1ν=2

78.1O
73.9O

69.2O

64.5O

60.2O

55O

45.6O

33.9O

InGaAs/GaAs DQW 3892b
50mK; 5nA; as cooled in the dark

R
xx

 [k
O

hm
]

B
⊥
 [T]

24O

 

One very important feature to notice is the vanishing of the ν = 2 minimum. Illuminating 

the sample led to the second density measured. Results are shown in Fig. 7.10.  
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Figure 7.10 ρxx – data for several angles of the Hallbar with respect to the magnetic 
field after the first illumination. The lowest curve is taken for the sample in 
perpendicular position with respect to the magnetic field. The highest is taken at an 
angle of 84.1°. ne = 3.3 × 1015 m-2
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Again we observe the vanishing of the ν = 2 minimum and the appearing of the ν = 3 

minimum for increasing B||, showing that this minimum is due to spin splitting. After these 

series of measurements for the second density we proceeded to illuminate the sample to 

saturation density (ne =5.1 × 1015 m-2). The results for the ρxx – curves at different angles 

are shown in Fig. 7.11 below.  

 

  

The ν = 1 minimum is not visible anymore. The ν = 2 minimum is visible up to 34°. The ν 

= 3 minimum for this density is already present at 0°. We observe an interesting peculiarity 

concerning this minimum. First its width appears to increase until 56°. For higher angles 

the width decreases. Also the ν = 6 minimum behaves in an odd way for increasing angle. 

According to our initial claim the peculiarities observed in the data presented in this 

paragraph are inherent to the DQW and as such should not be observed in a SQW for 

comparable experimental and sample conditions. This will be elaborated in the next 

paragraph.  

 

 

 

Figure 7.11 ρxx – data for several angles of the Hallbar with respect to the magnetic 
field after the second illumination. The lowest curve is taken for the sample in 
perpendicular position with respect to the magnetic field. The highest curve is taken 
at an angle of 83.2°.  ne =5.1 × 1015 m-2. 
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7.5 Comparison of the double quantum well and the single quantum well.  

 

In this paragraph we will compare the results obtained from the DQW with the results 

obtained from the SQW under similar conditions. This sample has been named #2982.  The 

measurements on the SQW where performed for four different densities, trying to match 

the densities measured in the DQW. The calculated energy profile of the SQW in shown 

below in Fig. 7.12. 

 

 

Figure 7.12 Energy profile of SQW, sample 2982. 
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The width of the SQW is 10 nm, which corresponds to the total well-width in the DQW.  

The width of the spacers is again 19 nm and the initial density ne = 2.2 x 1015 m-2. The value 

x = 0.18 is comparable to x = 0.20 of the DQW. Notice the single subband below the Fermi 

level in contrast of the two subbands for the DQW (Fig. 7.8). Other evidence for the 

number of filled subbands can be obtained from the Shubnikov-the Haas (SdH) oscillations 

in the low field regime. One filled subband corresponds to one period in the oscillations. 

Several interfering periods denote several filled subbands. In Fig. 7.13 on the next page the 

SdH- oscillations for both the SQW and the DQW are displayed. Notice that for the SQW 

there is only one period, while for the DQW several interfering periods are visible. The 
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number of individual subbands and their densities follow from the FFT of the longitudinal 

resistivity vs. the reciprocal magnetic field (not displayed here).       

 

 

Figure 7.13 SdH-oscillations for both the SQW (red curve) and the DQW (green 
curve). 
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Next we consider the resistivity curves for the SQW for different angles of the Hallbar with 

respect to the magnetic field. On the next page the case for the second measured density (ne 

= 2.62 x 1015m-2) is shown (Fig. 7.14). The ν = 3 minimum becomes more pronounced with 

increasing B|| as a consequence of the spin splitting of the Landau level. However, we don’t 

observe the peculiarities observed for the DQW, like the vanishing of the v = 2 minimum. 

For the DQW at 61° this minimum has half of its width at 0° (Fig. 7.10), where in the SQW 

the width at 60° has hardly changed compared to the width at 0°.  

Next we consider the resistivity curves for the highest measured density:                       

ne = 4.76 x 1015m-2 (Fig. 7.15). At this density the ν = 3 minimum is already fully present at 

0° tilt. Now the ν = 5 minimum gets induced with increasing tilt. Again for this density we 

do not observe any of the DQW peculiarities. The width of the minima does not change. 

There is no vanishing of any minimum and there is no irregular behavior in the width of the 

minima, like for the ν = 3 minimum of the DQW. Also no minimum of the SQW displays 

the odd behavior of the ν = 6 minimum of the DQW (Fig. 7.11). 



                                                                                                                                                 Chapter 7 110 

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

ν =2

85°

80°
75°

70°

60°

50°
0°

R
xx

 (K
Ω

)

B
⊥

30° 

 ν =1

InGaAs/GaAs SQW 2982;
50mK; ne=  2.62 x 1015m-2

 

Figure 7.14 ρxx – data for several angles of the Hallbar with respect to the magnetic 
field after the first illumination (ne = 2.62 x 1015m-2). The lowest curve is taken for 
the sample in perpendicular position with respect to the magnetic field. The highest 
curve is taken at an angle of 85°. 

 

This is evidence for the assumption that the observed peculiarities in the Rxx curves of the 

DQW are related to the intrinsic aspects of the DQW. An explanation for this, making use 

of the LL-structure of the DQW, will be given in section 7.6.    

According to Fig. 7.3 another phenomenon can be expected as a consequence of the 

increasing parallel magnetic field, namely the depopulation of the lens subband. This 

happens in the transition from the lowest to the middle picture in Fig. 7.3b. Related to this 

process a dip becomes visible in the Rxx data [13,14]. In Fig. 7.16 we compare the SQW 

and the DQW for increasing B||. The angle of the sample with respect to the magnetic field 

is 90°, so there is no perpendicular component present.        
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Figure 7.15 ρxx – data for several angles of the Hallbar with respect to the magnetic 
field after the third and final illumination (ne = 4.76 x 1015m-2). Saturation density has 
been reached. The lowest curve is taken for the sample in perpendicular position with 
respect to the magnetic field. The highest curve is taken at an angle of 80°. 

 

In Fig. 7.16a) both Rxx and Rxy are shown at saturation density. It is interesting to notice 

that the value of Rxy remains zero, meaning that there is no perpendicular component of the 

magnetic field present. Rxx increases monotoneously, suggesting a reduction in the 

conductivity of the 2DEG. This is related to the increased localization of the electrons due 

to B||. In Fig. 7.16b) we see a different scenario. Here for all three densities a minimum in 

the Rxx curves is observed, indicating the depopulation of the antisymmetric subband. This 

minimum shifts to the right with increasing density. This makes sense if assume that 

depopulation of a subband occurs at higher values of B|| for higher densities.  

In the next section we will try to explain the DQW peculiarities by looking at how the 

Landau levels evolve as function of the magnetic field. 
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Figure 7.16 Resistance data as function of an increasing B||, when no B|| is present for 
a) the SQW at saturation density (ne = 4.7 × 1015 m-2 ) and b) the DQW for three 
densities (ne = 2.3 × 1015 m-2 , 3.3 × 1015 m-2 and 5.1 × 1015 m-2). For the SQW also 
Rxy is visible (flat line). Notice how its value remains zero, indicating that no 
perpendicular component is present.   

a) b) 

   

 

7.6 Unique aspects of the double quantum well revised. 

 

In order to understand the unique aspects observed in the resistivity curves of the DQW it is 

important to understand the nature of the transitions. From Fig. 7.5 for instance it is clear 

that there are three types of transitions possible. One between two Landau levels of the 

same subband whether or not they have the same spin-polarity. One between the two spin-

splitted components of a Landau level and one between Landau levels of the two subbands. 

The same transition can belong to each of these three categories, dependent on how the 

Landau levels of the subbands are situated with respect to each other. It is exactly this 

aspect that is influenced by the parallel magnetic field component. By substituting Eq. 7.1 

into Eq. 7.2, LL-fans have been calculated for our DQW for different values of B||. In the 

following we will show the calculated LL-fans, the cross sections of the energy dispersion 

paraboloids (Eq. 7.1) for kx equals zero, the cross sections at the Fermi level and the 

measured data for the B|| values of 0, 6 and 15 T. There is no one to one correspondence 

between the measured data and the calculated LL fans, since in the former the angle is kept 
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constant (so B|| also increases with increasing magnetic field) and in the latter the value of 

B|| is kept constant. Still we will try to make this match as good as possible.  

Below (Fig. 7.17) the situation for B|| = 0 and zero tilt is shown. The data shown is for the 

highest measured density.  

 

 

Figure 7.17a) Measured resistivities of the DQW for zero tilt and the highest density.  
Inset shows the cross sections of the energy dispersion paraboloids for kx = 0 (left) and at 
the Fermi surface (right). b) Calculated LL-fans for B|| = 0. The displayed LL’s are ν  = 1, 
2 and 3 for both subbands. The thick line indicates the Fermi level. Figure taken from Ref 
[15].  
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At B|| = 0 there is no shift of the energy dispersion paraboloids and the surfaces for both 

subbands are equally centered as shown in the inset. The thick line in Fig. 7.17 b) is drawn 

by hand and represents the Fermi energy level ‘moving’ through the LL’s. The value of EF 
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has been calculated by substituting the value for the Fermi-wave vector 
Dn22 ⋅πFk =  in 

Eq. 7.1. In Fig. 7.18 below the same is shown for the cases of B|| = 6 T and a tilt of 56° 

(left) and 15 T and a tilt of 65° (right). For the case of B|| = 15 T, ρxx as function of a pure B|| 

is shown in the inset.  
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Figure 7.18 idem as Fig. 7.17 but for B|| = 6 T and a tilt of 56° (left) and B|| = 15 T 
and a tilt of 65° (right). Figure taken from Ref. [15]. 

 

The first thing to notice in Figs. 7.17 and 7.18 is how the nature of the ν = 3 minimum 

changes with increasing B||. For B|| = 0 the ν = 3 minimum lies between two spin splitted 

LLs of the antisymmetric subband (Fig. 7.17b). For B|| =0 the same minimum lies between 

two spin splitted LLs of the symmetric subband. For B|| =15 T the ν = 3 minimum lies 

between the same two spin splitted LLs of the symmetric subband. The gap is now bigger 

because of the increased B|| =15 T. This changing of the LL configuration regarding the ν = 
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3 minimum explains the behavior we observe in the ρ xx-curves for this minimum in the 

DQW (Fig. 7.11). The remarkable behavior of the ν = 6 minimum (Fig. 7.11) can be 

explained because of the complicated pattern that arises in the LL pattern around 4 T, with 

increasing B|| (Fig. 7.18 left). The vanishing of the ν = 2 minimum visible in Fig. 7.9 and 

7.10 is probably explained by the separation of the symmetric and antisymmetric subband. 

This quasi-classical approach however has its limitations especially for high values of B||. A 

more accurate analysis of the magnetic level pattern can be done using a quantum 

mechanical approach [16].    

 

7.7 An unexpected peculiarity  
 
In addition to the above mentioned typical behavior of the DQW we observed another 

phenomenon that is very remarkable. It turned out that in the middle of the even numbered 

plateaus ν = 2 and 4 a dip occurs.  This dip decreases in size with increasing B||  for the ν = 

2 plateau, but increases in size with increasing B|| for the ν = 4 plateau. This could not be 

explained by a sudden failure in the measuring circuit like a local increase in the out of 

phase signal. This behavior is visible in Fig. 7.17 and 7.18 and is displayed in more detail 

below in Fig. 7.19.  

 

This behavior has been observed for all three the measured densities of the DQW and is 

again completely absent in the SQW (Fig. 7.20). 

Notice how the dip is well pronounced at the ν = 2 plateau, but completely absent at the ν = 

4 plateau for a pure perpendicular magnetic field. This behavior might be explained by the 

reentrant QHE [17]. 
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Figure 7.19 ρxx and ρxy – data of the DQW for the highest measured density for 
increasing B||. Notice the dip in the even plateaus ν  = 2 and 4 and how the size of this 
dip changes with changing B||.

 

 

 
Figure 7.20 Comparison of the SQW and the DQW for pure 
B⊥. Both have reached saturation density.    
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7.8 Conclusions 
 
Magnetrotransport measurements have been carried out on an InxGa1-xAs/GaAs DQW with 

a large Landé g-factor (g ≈ 3) for three different electron densities. The results are 

compared with magnetotransport data taken on an InxGa1-xAs/GaAs SQW with comparable 

characteristics. The main results of our study can be summarized as follows: 

• The heterostructure used with g ≈ 3 gave a well pronounced spin splitting of the 

Landau levels, which is not due to the exchange enhancement caused by the local 

magnetic field.   

• The DQW-data display peculiarities that are absent in the SQW-data and can be 

explained only by the unique aspects of the DQW. These peculiarities are: (i) 

vanishing of the ν = 2 minimum with increasing B||, (ii) a non-uniform behavior of 

the ν = 3 minimum (first a broadening then a narrowing) with increasing B||, (iii) 

an irregular behavior of the ν = 6 minimum with increasing B|| and (iv) a dip that 

occurs in the ν = 2 and 4 plateaus of the DQW and of which the size changes with 

changing B||. 

• The first three peculiarities can be explained by the quasi-classical Landau level 

pattern for the DQW. The last peculiarity has been attributed to the reentrant QHE. 

• In order to further elucidate the typical features of DQW physics more extended 

calculations, notably quantum mechanical calculations of the Landau level 

patterns, are required [18]. 
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Summary 

 

The work described in this thesis consists of two parts. The first and main part is dedicated 

to a magnetotransport study of the scaling of the integer quantum Hall effect, with an 

emphasis on probing the irrelevant critical behavior (Chaps. 3-5). The second part (Chaps. 

6-7) is devoted to a magnetotransport study of quantum wells with a thin barrier and bi-

layer quantum wells.  

After an introduction of the quantum Hall effect (Chapter 1) and a summary of the 

theoretical aspects related to scaling (Chapter 2), we first describe the experimental 

technique used to measure the 2DEG in Hall bar samples in the high-ohmic regime 

(Chapter 3).  Especially we describe a newly implemented dc-technique, which turned out 

to improve the measurement accuracy when compared to the traditional ac-technique. This 

is of particular importance for magnetotransport data taken in high magnetic fields, where 

the resistance of the samples rapidly increases in the regime of the plateau-insulator 

transition.  

In Chapters 4 and 5 we report a scaling study carried out on a InGaAs/GaAs quantum well 

prepared with a relatively broad conduction channel as to reduce the total resistance of the 

Hall bar in high magnetic fields. The electron density of the 2DEG could be tuned by 

illumination and ranges from ne= 1 to 2×1015 m-2. Consequently, the plateau-insulator (PI) 

transition occurs in the magnetic field range 7.7-14.8 T. This work strongly builds on - and 

expands - the experimental scaling studies carried out previously at the Van der Waals-

Zeeman Institute by De Lang and Ponomarenko on similar samples.  

In Chapter 4 we focus on the characterization of the InGaAs/GaAs Hall bar by means of 

magnetotransport measurements. The gradient in the electron density along the bar is 

determined for four different electron densities by means of the method of “reflection 

symmetry” at the 2→1 plateau-plateau (PP) transition. The quality of the sample increases 

with increasing density. Next we investigate the relevant critical exponent κ extracted from 

the temperature variation of the longitudinal resistance at the PI transition. The deduced 

values κ = 0.43-0.53 are comparable to those obtained in previous studies. Numerical 

simulations are used to investigate the influence of density gradients on the value of κ.  The 
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variation of κ is in part an experimental feature attributed to the remaining overlap of the 

Landau levels at the lower densities. On the other hand, the extracted κ values should be 

considered as “effective”, because the scattering may exhibit long-ranged components with 

respect to the magnetic length.  

In Chapter 5 we focus on the irrelevant critical exponent yσ, which has been extracted from 

the deviations of the Hall resistance from the quantized value h/e2. We have measured the 

Hall resistance using the dc-method for four different electron densities. A detailed analysis 

of the Hall data employing a new data collapse method results in yσ ranging from 2.4 to 2.7 

for the different electron densities. These values agree well with previously obtained 

values. However, in order to obtain a good data collapse it appeared necessary to apply a 

small temperature dependent shift of the data in the filling factor ν. The fact that the critical 

filling factor shows a small temperature variation underlines the high degree of 

macroscopic inhomogeneities in the sample. By using the universal scaling functions 

derived by Pruisken and the experimentally determined parameters for κ, yσ and the 

characteristic temperatures T0 and T1 of the InGaAs/GaAs quantum well we construct the 

renormalization group flow diagram. This is the most important result obtained in this 

thesis. The flow diagram shows all the properties predicted for genuine scaling: relevant 

and irrelevant flow, the location of the critical point (σH, σ0) = (½e2/h, ½e2/h) and particle-

hole symmetry. We stress that the determination of the flow diagram for the present sample 

is only possible through the determination of the conductivity tensor at the PI transition. 

Macroscopic sample inhomogeneities obstruct obtaining an accurate flow diagram from the 

conductivity tensor at the PP transition. Thus in order to unravel all facets of the arresting 

topic of scaling of the quantum Hall effect, progress can only be made after a complete 

understanding of the effect of macroscopic sample inhomogeneities. 

In the remainder of the thesis quantum wells with a thin barrier and double layer quantum 

wells are investigated. In Chapter 6 we have investigated the energy spectrum of two sets 

of δ-doped GaAs/InGaAs/GaAs quantum wells, namely quantum wells with and without a 

thin central AlAs barrier. Our experimental probes are magnetotransport and 

photoluminescence. The experimental results were compared to numerical calculation of 

the energy levels and the wave function distributions. It turned out that the AlAs barrier can 

act as a phonon barrier and significantly changes the distance between the energy levels 
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and the spatial distribution of the wave functions. In addition, we found that the δ-doping 

regions act as V-shaped quantum wells and undesirably distort the wave functions. In order 

to relocate (confine) the wave functions in the central quantum well, a second series of 

samples was grown in which the V-shaped quantum wells were partly compensated by 

surrounding them with AlAs barriers. Unfortunately the electron density in the 2DEGs was 

not high enough to fill more than one subband and the desired improvement was not 

obtained for this second series of samples.  

In Chapter 7 we have studied the effect of a tilted magnetic field on an InxGa1-xAs/GaAs 

bilayer quantum well with a large Landé g-factor. The large Landé g-factor is chosen to 

enhance spin-splitting effects. By performing magnetotransport measurements for different 

angles of the magnetic field with respect to the plane of the 2DEG, we can add a parallel 

component, B||, to the perpendicular magnetic field, while the effect of spin-splitting 

remains the same, i.e. one can study the effect of adding an in-plane magnetic field when 

the bilayer quantum well is tuned to a particular integer quantum Hall state. 

Magnetotransport data are taken on single (SQW) and double quantum wells (DQW) and 

compared with each other. The DQW data exhibit features that cannot be explained by the 

physics used to describe the SQW. These features are: (i) the ν = 2 minimum disappears 

with increasing B||, (ii) the ν = 3 minimum widens and narrows as a function of B||,  (iii) the 

ν = 6 minimum shows an  irregular behavior with increasing B|| and (iv) an unexpected and 

still unexplained dip in the even integer plateaus of the Hall resistance. The first three 

features could be understood by an analysis of the calculated Landau Level fans. The latter 

feature is attributed to the reentrant quantum Hall effect.  

 



Samenvatting 

 

Dit proefschrift bestaat uit twee delen. Het eerste en tevens belangrijkste deel is gewijd aan 

een experimentele magnetotransport studie van het schalings-gedrag van het integer 

quantum Hall effect, met nadruk op het meten van het irrelevante kritische gedrag (Hfdst. 

3-5). Het tweede deel (Hfdst. 6-7) is gewijd aan een magnetotransport studie van 

‘potentiaal putten (quantum wells)’ met een dunne centrale (elektronen) barrière en aan bi-

layer quantum wells. 

Na een introductie van het quantum Hall effect (Hoofdstuk 1) en een samenvatting van de 

aan schaling ten grondslag liggende theoretische aspecten (Hoofdstuk 2), beschrijven we 

allereerst de experimentele techniek die gebruikt is om te meten aan het 2-dimensionale 

electron gas (2DEG) in samples met een Hall bar configuratie in het hoog-ohmische regime 

(Hoofdstuk 3). Er wordt hoofdzakelijk ingegaan op een recent door ons geïmplementeerde 

dc-techniek, die vergeleken met de traditionele ac-techniek, een verbeterde 

meetnauwkeurigheid bleek op te leveren. Dit is met name van belang voor 

magnetotransport metingen uitgevoerd bij hoge magneet velden, waar de weerstand van de 

samples snel toeneemt in het regime van de plateau-insulator overgang. 

In de Hoofdstukken 4 en 5 beschrijven we een ‘schaling studie’ uitgevoerd op een 

InGaAs/GaAs quantum well met een relatief breed geleidingskanaal met als doel de totale 

weerstand van de Hall bar bij hoge magneet velden af te doen nemen. De electronen 

dichtheid van het 2DEG kon ingesteld worden door belichting en varieert van ne = 1 tot 2 × 

1015 m-2. Dit betekent dat de plateau-insulator (PI) overgang plaatsvindt in het 

magneetveld bereik van 7.7 tot 14.8 T. Dit werk bouwt voort op – en is een uitbreiding van 

- de experimentele studies naar schaling eerder verricht op het Van der Waals-Zeeman 

Instituut door De Lang en Ponomarenko op vergelijkbare samples.  

In Hoofdstuk 4 ligt de focus op het karakteriseren van de InGaAs/GaAs Hall bar d.m.v. 

magnetotransport metingen. De gradiënt in de elektronen dichtheid langs de Hall bar is 

voor vier verschillende elektronen dichtheden bepaald gebruik makende van de methode 

van ‘‘reflectie symmetrie’’ voor de 2→1 plateau-plateau (PP) overgang. De kwaliteit van 

de samples neemt toe met toenemende dichtheid. Vervolgens is onderzoek gedaan naar de 
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relevante kritische exponent κ zoals bepaald uit de temperatuur variatie van de 

longitudinale weerstand nabij de PI overgang. De hieruit afgeleide waarden van κ = 0.43-

0.53 zijn vergelijkbaar met de waarden verkregen uit eerdere studies. Numerieke simulaties 

zijn gebruikt om de invloed van dichtheid gradiënten op de waarde van κ te bepalen. De 

variatie van κ is deels te verklaren doordat de Landau niveaus nog niet helemaal 

gescheiden zijn bij de laagste dichtheden. Aan de andere kant moeten de geëxtraheerde 

waarden van κ beschouwd worden als ‘‘effectief’’, omdat het scattering gedrag mogelijk 

componenten bevat die een grote reikwijdte hebben t.o.v. de magnetische lengte.  

In Hoofdstuk 5 focussen we op de irrelevante kritische exponent yσ, die is afgeleid uit de 

afwijkingen van de Hall weerstand van de integere plateau waarde h/e2 bij toenemende 

temperatuur. De Hall weerstand is gemeten voor vier verschillende dichtheden gebruik 

makende van de dc-methode.  Een gedetailleerde analyse van de Hall data, waarbij gebruik 

wordt gemaakt van een nieuwe methode van ‘data collapsen’ geeft waarden voor  yσ 
variërend van 2.4 tot 2.7 voor de verschillende elektron dichtheden. Deze waarden 

corresponderen goed met eerder verkregen waarden. Echter, voor het verkrijgen van een 

goede ‘data-collapse’ bleek het nodig te zijn om een temperatuur afhankelijke shift van de 

data uit te voeren in de vul factor ν. Het feit dat de kritische vul factor een kleine 

temperatuur afhankelijke variatie vertoont duidt op een hoge mate van macroscopische 

inhomogeniteiten in het sample. Door gebruik te maken van de universele schalings-

functies zoals afgeleid door Pruisken en de experimenteel verkregen parameters voor κ, yσ 

en de karakteristieke temperaturen T0 en T1 van de InGaAs/Gaas quantum well wordt het 

‘renormalization group flow diagram’ geconstrueerd. Dit is tevens het meest belangrijke 

resultaat van dit proefschrift. In het ‘flow diagram’ komen alle eigenschappen terug die 

voorspeld zijn voor authentiek schalen: relevante en irrelevante flow, de plek van het 

kritische punt (σH, σ0) = (½e2/h, ½e2/h) en ‘particle-hole symmetrie. Het dient benadrukt 

te worden dat het bepalen van het flow diagram voor dit sample alleen mogelijk is door het 

bepalen van de geleidbaarheids tensor voor de PI overgang. Macroscopische 

inhomogeniteiten verhinderen het bepalen van een nauwkeurig flow diagram uitgaande van 

de geleidbaarheids tensor voor de PP overgangen. Dus voortgang in het ontrafelen van alle 

facetten van schalen binnen het quantum Hall effect kan alleen gemaakt worden nadat 

volledig begrip is verkregen omtrent macroscopische sample inhomogeniteiten.    
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In het resterende deel van dit proefschrift worden quantum wells met een centrale barrière 

en bilayer quantum wells onderzocht. In Hoofdstuk 6 is gekeken naar het energie spectrum 

van twee sets van δ-gedoopte GaAs/InGaAs quantum wells, te weten quantum wells met en 

zonder dunne centrale AlAs barriere. Onze experimentele sondes bestaan uit 

magnetotransport en fotoluminescentie metingen. De experimentele resultaten zijn 

vergeleken met numerieke berekeningen van de energie niveaus en de distributies van de 

golffuncties. Het is gebleken dat de AlAs barriere dienst doet als fononen barrière en de 

afstand tussen de energie niveaus en de ruimtelijke verdeling van de golffuncties 

aanzienlijk verandert. Bovendien is gebleken dat de δ-gedoopte gebiedjes als V-vormige 

potentiaal putjes ageren en de golffuncties op een ongewenste wijze vervormen. Om de 

golffuncties toch te beperken tot de centrale quantum well is een tweede serie samples 

gegroeid waarbij het effect van de V-vormige potentiaal putjes (deels) gecompenseerd is 

door deze te omgeven met AlAs barrières. Helaas was de electronen dichtheid in deze serie 

samples niet genoeg om meer dan een subband te vullen en kon de gewenste verbetering 

niet verkregen worden.  

In Hoofdstuk 7 is gekeken naar het effect van een schuin invallend magnetisch veld op een 

InxGa1-xAs/GaAs bilayer quantum well met een grote Landé g-factor. Een grote Landé g-

factor is gekozen om het effect van spinsplitsing te versterken. Door het uitvoeren van 

magnetotransport metingen voor verschillende hoeken tussen het magneetveld en het vlak 

van het 2DEG, is het mogelijk een parallelle veld component, B||, toe te voegen aan het 

loodrechte magneet veld, terwijl het effect van spinsplitsing gelijk blijft. M.a.w. het is op 

deze manier mogelijk om het effect van het toevoegen van een parallelle component te 

bestuderen terwijl de bilayer quantum well in een bepaalde ‘integer quantum Hall’ toestand 

is gebracht door de loodrechte component van het magneetveld. Magnetotransport data 

verkregen van een single (SQW) en een double quantum well (DQW) worden met elkaar 

vergeleken. De DQW data vertonen eigenschappen die niet verklaart kunnen worden door 

de onderliggende fysica van de SQW. Deze eigenschappen zijn: (i) het verdwijnen van het 

ν = 2 minimum voor toenemend B||, (ii) het verwijden en vervolgens vernauwen van het ν

 = 3 minimum als functie van B||, (iii) het ν = 6 minimum vertoont onregelmatig gedrag bij 

een toenemend B|| en (iv) een onverwachte en nog steeds onverklaarde dip in de even 

‘integer plateaus’ van de Hall weerstand. Een verklaring van de eerste drie eigenschappen 
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is verkregen a.d.h.v. analyse van de ‘Landau Level fans’. De laatste eigenschap wordt 

toegekend aan het ‘reentrant quantum Hall effect’. 
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