Non-Fermi liquid phenomena at the quantum critical point

Anne de Visser
Van der Waals-Zeeman Institute
University of Amsterdam

Contents

• Correlated metals
 – Quantum phase transitions
 – Non-Fermi liquid behaviour
• Magnetotransport model of Rosch
• Case studies: \(\text{U}_2\text{Pt}_2\text{In} \) and \(\text{U}_3\text{Ni}_3\text{Sn}_4 \)
• Summary and outlook

See: e-prints LANL cond-mat/0009324, LANL cond-mat/0011061
Thanks to

- Pedro Estrela*
 Engineering Department, Cambridge University

- Takashi Naka
 National Research Institute for Metals, Tsukuba

- Laura Pereira
 Technological and Nuclear Institute, Sacavém

- Larissa Shlyk
 Institute for Low Temperature Physics and Engineering,
 National Academy of Sciences of Ukraine, Kharkov

*Thanks to the EC for a Marie Curie Fellowship within the TMR program
1. Correlated metals: phenomenology

- Fermi-liquid theory
 - Strongly renormalised electron gas
 - Quasiparticles with large effective mass
 - Narrow band of conduction electrons

\[
\frac{m^*}{m_e} = \frac{v_F}{v_F^*} = \frac{T_F}{T_F^*} \approx 100
\]

- Thermal, magnetic and transport properties follow Fermi-liquid expressions \((T \rightarrow 0)\)
 - Specific heat
 - Electrical resistivity
 - Magnetic susceptibility

\[
c = \gamma^* T \quad \text{with} \quad \gamma^* / \gamma = m^* / m
\]

\[
\rho = \rho_0 + A^* T^2
\]

\[
\chi^* = \text{constant}
\]

- One-parameter scaling

\[
\frac{\chi^*}{\gamma^*} = 1
\]

\[
A^* \frac{1}{(\gamma^*)^2} \text{ is constant}
\]
Correlated metals: microscopic level

- Spin fluctuations of 4f (cerium) or 5f (uranium) electrons
- In dense Kondo system competing interactions:
 - On-site Kondo effect
 - Inter-site RKKY interaction
- Around critical value J_c heavy-fermion state
 - $J < J_c$ magnetic order
 - $J > J_c$ Fermi liquid
- At J_c quantum critical point
Correlated metals: renormalisation group picture

- Local-f-moments at high T evolve into narrow hybridisation-induced band of quasiparticles at low T
- Ratio T_K/T_{RKKY} determines groundstate
- AFM and FL fixed points connected by unstable non-Fermi liquid fixed point

Because of strong hybridisation correlated metals are excellent materials to control T_K/T_{RKKY} by mechanical or chemical pressure at $T=0$

\rightarrow quantum phase transition

Schematic RG flow diagram: Coleman, Physica B 1999
Quantum phase transition

- Continuous phase transition (second order) at $T=0$
 \rightarrow quantum effects (energy scale $\hbar \omega_c$) are important
 $\hbar \omega_c \gg k_B T$

- Characteristic energy scale for quantum fluctuations vanishes as
 $\hbar \omega_c \sim |\Delta|^z$ with $\Delta = (1 - \delta/\delta_c)$

- Length scale ξ diverges as $\xi^{-1} \sim |\Delta|^\nu$ and $\hbar \omega_c \sim \xi^{-z}$

- Static and dynamical critical behaviour coupled through dynamic critical exponent z and correlation length exponent ν
Non-Fermi liquid behaviour

- Effect of non-zero temperature on quantum critical points in itinerant Fermion systems (Millis PRB 1993; Hertz PRB 1976)
- Three regimes
 I Quantum Fermi liquid: fluctuations on scale of ξ have energy $\gg k_B T$
 II Perturbative classical: ξ controlled by δ
 $$\xi^{-2} \sim |\delta - \delta_c|$$
 III Classical Gaussian: ξ controlled by T
 $$\xi^{-2} \sim T^{1+1/z}$$

Schematic phase diagram: Millis, PRB 1993
NFL expressions for specific heat and resistivity

- Non-Fermi-liquid regime (II and III)
 - $z=3$: ferromagnetic quantum critical point
 \[c \sim -T \ln(T/T_0) \quad \rho \sim T^{5/3} \]
 \[c \sim T^{2/3} \quad \rho \sim T^{4/3} \]
 - $z=2$: antiferromagnetic quantum critical point
 \[c \sim \gamma T - \alpha T^{3/2} \quad \rho \sim T^{3/2} \]
 \[c \sim -T \ln(T/T_0) \quad \rho \sim T \]

- Fermi-liquid regime (I); $z=2$ or 3, $d=3$
 \[c = \gamma T + \alpha T^3 \ln(T/T_0) \quad \rho = \rho_0 + AT^2 \]
2. Magnetotransport model of Rosch

- Weak-coupling spin-density wave model for nearly AF Fermi liquid
 - Heavy quasiparticles scatter at spin fluctuations
 - Dominant scattering near hot lines, i.e. points on the Fermi surface connected by AF wave vector Q

- Disorder taken into account
 - Boltzmann equation treatment of the interplay of strongly anisotropic scattering and weak isotropic impurity scattering

Rosch, PRB 2000
Resistivity scaling diagram

- Scaling form:
 \[\Delta \rho = \rho_0 + \Delta \rho \]

 \[\Delta \rho = T^{3/2} f \left(\frac{T}{\rho_0}, \frac{\delta - \delta_c}{\rho_0}, \frac{B}{\rho_0^{3/2}} \right) \]

- Three regimes:
 1. Disorder dominated NFL
 \[\Delta \rho \sim t^{3/2} \]
 2. Clean limit NFL
 \[\Delta \rho \sim t^{1/2} \]
 3. Fermi-liquid
 \[\Delta \rho \sim t^2 r^{-1/2} \]

 where \(t = T/T_{coh}, r = (\delta - \delta_c)/\delta_c \) and \(x = \rho_0 / \rho_m \sim 1/RRR \)

Rosch, PRB 2000
3. Case study: U_2Pt_2In

- Member of tetragonal U_2T_2X family with T = transition metal, X = In or Sn
 - 5f hybridisation phenomena
 - Doniach diagram
- Non-ordering heavy-fermion system
 - $\alpha T = 0.41$ J/mol\(_0\)K\(^2\) at $T=1$ K
- Non-Fermi liquid behaviour
 - $\alpha T \sim \ln(T/T_0)$
 - $\chi(T)$ has maximum at $T_{max} = 8$ K for $B||c$
 - $\chi(T) \sim T^{0.7}$ for $B||a$

Specific heat: Estrela et al., Physica B 1999
Case study: U$_2$Pt$_2$In

- Non-Fermi liquid behaviour in resistivity

 \[\rho = \rho_0 + a T^\alpha \]

 - \(\alpha = 1.25 \pm 0.05 \) for \(l \parallel a \) (\(T < 1K \))
 - \(\alpha = 0.9 \pm 0.1 \) for \(l \parallel c \) (\(T \rightarrow 0 \))

- Fermi liquid \(\alpha = 2 \) recovered in magnetic field

- Kondo disorder?
 - \(\rho_0 = 115 \mu\Omega\text{cm} \) for \(l \parallel a \)
 - \(\rho_0 = 210 \mu\Omega\text{cm} \) for \(l \parallel c \)

 But

 - stoichiometric compound
 - high-crystalline quality from x-rays and neutrons

- Resistivity in field: Estrela et al., cond-mat/0009324
Stability of NFL phase to pressure

- Resistivity under pressure shows strong current-direction dependence
 - $I || a$
 - $\rho_a(T)$ reduced
 - recovery T^2 term near 1 GPa
 - $I || c$
 - $\rho_c(T)$ increases
 - minimum develops near 1 GPa
 - $T_{\text{min}} \sim 4.8 \text{ K at } 1.8 \text{ GPa and } B=0$
 - $T_{\text{min}} \sim 2.2 \text{ K at } 1.8 \text{ GPa and } B=8 \text{ T}$

Resistivity under pressure: Estrela et al., cond-mat/0009324
Stability of NFL phase to pressure

- For $l||a$ and $T \rightarrow 0$

$$\alpha = \lim_{T \rightarrow 0} \alpha_{\text{eff}}(T)$$

$$\alpha_{\text{eff}}(T) = 1 + \frac{d \ln (\frac{d \rho}{d T})}{d \ln T}$$

- $\alpha = 1.25 \pm 0.05$ at $p = 0$
- $\alpha = 2.0 \pm 0.1$ at $p \geq 1 \text{ GPa}$

- Coefficient of the T^2 term
 - $A = 2.1 \pm 0.2 \mu \Omega \text{cm/K}^2$ at $p = 1.0 \text{ GPa}$
 - $A = 0.4 \pm 0.04 \mu \Omega \text{cm/K}^2$ at $p = 1.8 \text{ GPa}$

- Recovery of Fermi-liquid behaviour near 1 GPa

Resistivity exponent α under pressure:

Estrela et al., cond-mat/0009324

WZI Group meeting "Condensed Matter Physics & Materials Science", Amsterdam, 21 March 2001
Analysis in magnetotransport model of Rosch

- For $I \parallel a$, $x \sim 1/\text{RRR} \sim 0.6$
 - intermediate disorder
- Fit $\rho \sim T^2$ and $\rho \sim T$
 at each pressure

Resistivity at $\rho = 1.8$ GPa: Estrela et al., cond-mat/0009324
Analysis in magnetotransport model of Rosch

From fit $\rho \sim T^2$ and $\rho \sim T$:

- $\Delta\rho \sim t^2 r^{-1/2}$
 - $T_{FL} = \rho - \rho_c$ with $\rho_c = 0$

- $\Delta\rho \sim t^x r^{1/2}$
 when $x < T/T_{coh} < x^{1/2}$
 - $\rho \sim T$ for $2.8 \text{ K} < T < 4.7 \text{ K}$
 - $x = 0.34$ and $T_{coh} = 8.1 \text{ K}$

- $\Delta\rho \sim t^\alpha$ with $1 < \alpha < 2$
 - represents $\Delta\rho \sim t^{3/2}$
 - $\alpha = 1.25 \pm 0.05$ at $p = 0$

For $l \parallel a$ the data are consistent with an AF QCP at $p_c = 0$
Doniach-type diagram for U_2Pt_2In and U_2Pd_2In

- U_2Pd_2In
 - AF ordering at $T_N = 37 \text{ K}$
 - isoelectronic to U_2Pt_2In

- Doniach-type diagram
 - $J \propto V_{\sigma f}^{-1}/(E_F - E_f)$
 - $V_{\sigma} = (V_{df}^{-2} + V_{pf}^{-2} + V_{ff}^{-2})^{1/2}$

Doniach-type diagram: Estrela, Ph.D. Thesis 2000
Case study: U$_3$Ni$_3$Sn$_4$

- Member of cubic U$_3$T$_3$Sn$_4$ family where T= Ni, Cu, Pt, Au
 - 5f hybridisation phenomena
- Non-ordering heavy-fermion system
 - $\gamma = 0.128$ J/mol K2
 - $c \sim \gamma T + T^3 \ln(T/T_0)$
 - Fermi liquid $T < 0.4$ K
- NFL for 0.3 K $< T < 5$ K
 - $c \sim \gamma T - \alpha T^{3/2}$ (AF QCP)
 - $\chi \sim T^{-0.3}$ for $T=1.7-10$ K

Specific heat: Shlyk et al., J. Phys.: Cond. Mat. 1999
Stability of FL phase to pressure

- Resistivity typical for dense Kondo system
 - weak maximum at \(\approx 240 \text{ K} \)
 - \(T_{\text{coh}} \approx 16 \text{ K} \) at \(p=0 \)
 - \(T_{\text{coh}} \approx 20 \text{ K} \) at \(p=1.8 \text{ GPa} \)
 - \(\rho_0 \approx 6 \mu\Omega\text{cm}, \text{ RRR} \approx 55 \)
 - relatively clean material

Resistivity under pressure: Estrela et al., cond-mat/0009324
Stability of FL phase to pressure

- $\rho = \rho_0 + AT^2$ for $T < T_{FL}$
- Fermi-liquid temperature range increases with pressure

Resistivity under pressure versus T^2
Estrela et al., cond-mat/0011061
Analysis within magnetotransport model of Rosch

$\text{U}_3\text{Ni}_3\text{Sn}_4$ is relatively clean

- $\Delta \rho \sim t^2 r^{-1/2}$
- $\Delta \rho \sim t^{3/2}$ is suppressed

 $T_{FL} = a(p - p_c)^\nu$

 with $\nu = 0.50 \pm 0.07$ and
 $p_c = -0.04 \pm 0.02$ GPa

- $\Delta \rho \sim t x^{1/2}$

 when $T_{FL} < T < T_{coh} x^{1/2}$

 - $x = 0.018$ and $T_{coh} \sim 16$ K
 - $\rho \sim T$ predicted for
 0.4 K $< T < 2.1$ K

AF QCP at $p_c = -0.04$ GPa

T_{FL} versus pressure: Estrela et al., cond-mat/0011061
Summary

- New magnetotransport model of Rosch for a nearly AF Fermi liquid
 - weak-coupling AF spin-density wave scenario
 - delineate different FL and NFL phases by magnetotransport experiments
 - includes the effects of disorder on the quantum phase transition

- Transport experiments under pressure to investigate magnetic QCP in two correlated metals
 - $U_2Pt_2In \rightarrow$ case of intermediate disorder
 \[T_{FL} \sim p-p_c, \text{ AF QCP at } p_c = 0 \]
 - $U_3Ni_3Sn_4 \rightarrow$ case of relatively clean material
 \[T_{FL} \sim (p-p_c)^{1/2}, \text{ AF QCP at } p_c = -0.04 \text{ GPa} \]
Outlook

• U_2Pt_2In
 - Why strong current-direction dependent pressure effect?
 - How to reconcile the $\sim T \ln(T/T_0)$ with an AF QCP? Two-dimensional nature of fluctuations like in CeCu$_{5.9}$Au$_{0.1}$?
 - Can one make U_2Pt_2In magnetic by alloying with e.g. Th or Pd?

• $U_3Ni_3Sn_4$
 - Can one recover $\Delta \rho \sim T^{3/2}$ term by reducing ρ_0?
 - Can one make $U_3Ni_3Sn_4$ magnetic by alloying with e.g. Th or Pt?

• Transport in a magnetic field

• Weak-coupling versus strong-coupling scenario for the magnetic quantum phase transition in correlated metals
 Coleman, Physica B 1999; Schröder et al., Nature 2000