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Literature, software and homework

The course is based on the book:

H. Ibach and H. Lith: Solid State Physics
3"d edition (Springer-Verlag, Berlin, 2003)
ISBN 3-540-43870-X

See also:

N.W. Ashcroft and N.D. Mermin: Solid State Physics

(Saunders College Publ.)
ISBN 0-03-083993-9

Computer simulations form an essential part of the course:
R.H. Silsbee and J. Drager:

Simulations for Solid State Physics
(Cambridge University Press, Cambridge 1997)
ISBN 0-521-59911-3

Software (freeware):

Homework exercises will be distributed throughout the course
Completing the course gives 6 ECTS — ~ 6 x 28 hours




Course 3: Motions of electrons and transport phenomena

Density of States

Pictures are taken from the Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and Lith,
from Ashcroft and Mermin and from several sources on the web.




Course 3: Motions of electrons and transport phenomena

Equation of motion of electrons

Drude and Sommerfeld models for conductivity

Crystal momentum is not momentum!

Motion of electrons in bands and the effective mass tensor
Currents in bands and holes

Scattering of electrons in bands

Electrical conductivity of metals

Quantum oscillations and the topology of Fermi surfaces

Quantum Hall effect

Pictures are taken from the Solid State Course by Mark Jarrel (Cincinnati University), from the book of
Ibach and Luth, from the book of Ashcroft and Mermin and from several sources on the web.




Equation of motion of electrons

Classical equation of motion in E and B field:

without collisions

v decays exponentially
relaxation time t




Drude model for conductivity

Classical model: dilute gas of electrons
neglect interactions with other electrons
and ions between collisions

Independent electron approximation
free electron approximation
collisions probabillity 1/t
(time between collisions 1)
thermal equilibrium through collisions

T~1014-10% s, vy ~10°m/s
mean free path ¢ = v;t = 1-10 A

Paul Drude
(1863-1906)

- Maxwell-Boltzmann
velocity distribution

- equipartition of energy
1/2 mv;2 = 3/2 kT

electron transport with
V,,=Vp = drift velocity

Important failure Drude:
mean free path ¢ can be >>
Interatomic distance




Sommerfeld model for conductivity

Quantum mechanical description

. Tk,

: . 5=
Fermi velocity P
G|
2m

Fermi energy

E,=
Fermi-Dirac velocity distribution
Semi classical energy gain electrons

displaced

_ In k space
“drift K”

stationary state

mean free: / = vt (use Fermi velocity!)
example copper: v.= 1.6x10% m/s

T~ 2x109%at 4K — 7, = 3x103 m

T ~ 2x10-% at 300K — /550 = 3x10-8 m

Sommerfeld works also at low T!

Like Drude!



Intermezzo: Crystal momentum is not momentum!

Free electron with energy ¢, in state v,

Bloch electrons

H=- h” 4 ~+V(x) pkzju;(x)e_’kx *(x)(—zh

2m dx*

d

X

ju (x)e™ dx

. d
W, (x) = U, (x)e’kx —hk—zhjuk(x) L;k dx # hk

real momentum crystal momentum




Motion of electrons in bands and effective mass tensor

the real world: electron state is wave packet  delocalized
U (k) = const.5(k —ky) = w(x,1) o< "o~

l//(x,t) — i IU(k)ei(h—w(k)t)dE
21

U (k) = const. = y(x,1) o< 6(x) [IEIFAN

group velocity and dispersion
v =%—§€0 - w=c(k)k
velocity of crystal electron

depends on dispersion E(k)

v=V o(k)= %vkE(ié )

free electrons:
E= 72k?/2m
v = ka/m = p/m




Velocity of crystal electron

Example:
tight binding dispersion relation

g =FE _ +A+2Bcos(ka)

velocity

1o -
V=V E)

Vi

— Wy, = —2Basin(ka)

velocity Is constant at fixed k _ |
very different from classical picture in it of /2




Semi classical eqg. of motion in electric field

rate of change of group velocity component

effective mass tensor (inverse)

eq. of motion




Effective mass

2nd derivative

. he
m =
d’E/dk*

flatter band
— higher m*

dvldk>0 — m >0
dvlidk<0 — m <0

*
*

Negative
effective
mass !

effective mass approximation h?

E(k)=E,+—(k?+k?+k?)
m* constant when ° 2 !

m




Crystal (Bloch) electron in electric field

Force due to electric field
IS equal to time derivative of
crystal momentum

h % Sy
dt

Bloch state evolves,
after time At:

when state reaches BZ

‘ { k= n/a — -r/a NB Scattering prevents

Bloch oscillations observation Bloch osc.

k in units of n/a




Current for Bloch states in a half filled band

Scattering produces
steady state

Ak =——7
h

T = relaxation time

netto velocity E#0
— current

[ =-2¢ ka

occup. states

|AK| = eEt/A ~15 mt _ _
With T ~ 104 s and E ~1 V/m — In reality small change




Currents in bands and holes

particle current density of dk at k

dj, = v(k)ﬁ 13 V. E(k)dk density states in dk 1/(2m)3

] : o First B.Z.
electrical current density \.

Integrate over first Brillouin zone

Fermi suriace

different occupied states make different
contributions to the current density

full band

lattice with
Inversion symmetry

current = 0 — Insulator E(k N =E(-k )

F(-F) = %WE(—/E) . —%Wz(/?) - (k)




partially filled band: E field redistributes k states
symmetry around k=0 lost

. - " ! .
‘oceu pied states ampty 'occupied states

current of positive charge, particles in unoccupied states
e (holes)

J =45 3
k occupied

—e 77N 17 —e TN 17
=0 [¥(k)d = ML
1st Br.z. k empty

te (o,
= F \% (k )dk
k empty




near top of the band
(k taken from top)

- ___ s full states

holes

holes at the top of the band have positive effective mass!

Insulators
conduct at T#0
n ~exp(-E /kgT)




Scattering of electrons in bands

What did we learn:
equation of motion —
electrons/holes accelerate
Bloch waves in perfect lattice
— N0 resistivity

E(K) - E(k+q) ="hwi{q)

k-q

This cannot be true:

scattering!
deviations from periodicity
(defects, lattice vibrations)
electron-electron
collisions

near 300 K 1, ,~1010s Kk, scatters into k;,k,
>> T

e-ph or Te-d




Boltzmann equation and relaxation time approximation

Boltzmann eq. describes

“non-equilibrium steady state”
driving force due to E and B field
dissipation due to scattering

thermal equilibrium distribution E=B=0

£ = £ R0 L

E0  GER-EQIkT 4 q

change of fin time (t-dt) >t + effect of scattering

2,

(1 (1

Relaxation time approximation:
rate at which f returns to equilibrium

expanding up to terms linear in dt < deviation of f from f,

— Boltzmann equation

(ai) GEAG

ot ), r(/g)




Electrical conductivity of metals

Particle current density insert distribution function
LS rieyak

873 Bz

—
Jn =

- linear effects in electric field (Ohms law)
- iIsotropic medium, cubic lattice

- linearized Boltzmann eq. only states at Fermi surface

Important

e’ _ o~ ofy -
=i |E =——— | v2(k)r(k) 22 dk
Jx X 87Z3J.v,\( ) ( )aE

Fermi surface

Conductivity expressed as integral over the Fermi surface,
depends on Vv(Eg) and t(Ef)
_ct(E)

For parabolic band this reduces to: il m




Electrical conductivity of metals

Matthiesen'’s rule

P, = constant

po.=AT°

eIT

P =a(T16)° |

0

(e -D(A-e"

Debye Temp. O

S A Au 175 K
Cu +3.32%Ni o Na-202 K

o Cu:303K
+ Al -395K
o N 472K

o
ho

Cu+210 %Ni

Cus12%Ni |

o
-t

“pure” Cu

Relative resistance R/Rygak
Reduced resistance R/Rg

H

d |
0 12 14 6 200 0.1 0.2 0.3 04
Temperature (K) Temperature (K) Reduced temperature T/8

resistance of sodium resistivity of copper- phonon (Debye)
3 diff. defect concentrations nickel alloys resistance




Electrical conductivity of metals: examples

electrical resistivity

Ce:Cu2 Si 3

CeAl,

0.005 0.01
)
T? (KZ){

200
T (K)

resistivity of heavy-
fermion compounds

iy S, Cud, e

T

Fompoaratune (K}

resistivity of superconducting
cuprates: La,_ Sr,CuO,




Quantum oscillations and the topology of Fermi surfaces

Motion of electrons and holes in magnetic field
Lorentz force

for wave packet mv=rk

e closed orbits

v E(K)xB|

Electrons move:
In plane 1 B
tangential to surface of
constant E(k)

open orbits




Period of orbit in magnetic field

dS=¢dkdk,~—

Free electrons
S=nk? and E= 72k?/2m
_n*dS 2mm*

eB dE eB

Shubni'kov-de Haas effect
Resistance in Ga

T

cyclotron frequency why oscillations?




de Haas-van Alphen effect

Landau quantization

de Haas van Alphen
(1878-1960) (1906-1967)

B
Energy splitting : E —E =hw.=h < = 27;71

SF,extr: (7‘“+n)AS

. 1 .
Fermi surface area's. S,

Landau tubes cross
E- with period A(1/B)

Period of oscillations A(B




Some numbers:
period T = 2n/w. = 3.6x1011sin1 T

quantum number: (n+1/2)hw. ~ E¢
— for silver Ec= 5.5 eV
—->n~46x10forB=1T

absence of thermal smearing:
kgT/hm, < 1

kg T/ho, = kgm/he(T/B)=1.34(T/B)
— low T & high B

dHVA signal (magnetization)
In silver

Bl|[1,1,1] T=1.3K

two periods—

neck and belly orbits
S,4(belly)/S;;;(neck) = 51




Quantum Hall effect in 2D systems

2D electron gas formed at interface of
lattice matched heterostructures or quantum wells
Lattice mismatch to silicon (%)
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Heterostructures and quantum wells

/ potential well

Heterostructure

Conduction
Eand

Quantum well

E_ Walence
Band

AlGaAs GaAs AlGaAs




Magnetotransport in Hall bar geometry

Classically

Hall resistance
linear in field
gives carrier concentration
and type (electrons or holes)




The quantum Hall effect

INnGaAs/AlGaAs
T=30 mK

n=2.8x10" m?

1=3.4 m’IVs

3

)

4
g, ° j\
A /\. |A. JN
2 3 4 ) 6

B (T)

1

QHE: p,, quantized
(resistance standard)

allows precise determination
fine structure constant

Klaus von Kilitzing
Nobel Prize Physics 1985
“for the discovery of the
quantum Hall effect”




Landau quantization

Energy levels in band i split into discrete
Landau levels in magnetic field 1
ev Landau

— 1 28 cyclotron :
E,=N+3)ho, +gu,B W, =— fy 1908-1968
m requency Nobel Prize Physics 1962
— “for his pioneering
n = integer Zeeman term theories for
condensed matter”
Increasing B

N, states per unit area
per Landau level

B

NLh

Filling factor v

—_—

Density of States




Simple “explanation” QHE

Landau level Extended states disorder/impurities —
extended and localised

Localized states states in Landau levels

with increasing field B
Landau levels pushed
to above Ex —

plateau-plateau transitions

conduction when Landau
level In extended states

width extended states — 0
whenT —= 0




Typical numbers

Energy distance between levels

kg T~ 25 meV near 300 K
ha,~ 1.6 meV/T (m*= 0.067m,)
kKgT << hw.—» T<4 K

Filling fraction
typical n,p= 2x10% m-=
quantum limit v=1 - B~8.25T

"o _ n,ph
N, eB

V =

Field (T)

: INnGaAs/GaAs guantum well
‘ high B/T needed n = 2x1015 m_zq

T=0.08-4.2K




Fractional quantum Hall effect

4,9
4;/7

[ )

2/3) lass 1/2 \

v =1/3, 2/3, 1/5, 2/5 etc.

/ﬂMU ‘U

fractional quantum Hall effect in high mobility GaAs/AlGaAs heterostructure
T=0.15K

MAGNETIC FIELD [T]




