
UvA-VU Master Course: Advanced Solid State Physics

Contents in 2005:
• Diffraction from periodic structures (week 6, AdV)
• Electronic band structure of solids (week 7, AdV)
• Motion of electrons and transport phenomena

(week 8, AdV)
• Superconductivity (week 9&10, RW)
• Magnetism (week 11&12,JB)

Anne de Visser               Rinke Wijngaarden       Jürgen Buschow



Literature, software and homework

The course is based on the book:
H. Ibach and H. Lüth: Solid State Physics
3rd edition (Springer-Verlag, Berlin, 2003)
ISBN 3-540-43870-X
See also:
N.W. Ashcroft and N.D. Mermin: Solid State Physics
(Saunders College Publ.)
ISBN 0-03-083993-9

Computer simulations form an essential part of the course:
R.H. Silsbee and J. Dräger: 
Simulations for Solid State Physics
(Cambridge University Press, Cambridge 1997)
ISBN  0-521-59911-3
Software (freeware): www.physics.cornell.edu/sss/

Homework exercises will be distributed throughout the course
Completing the course gives 6 ECTS → ~ 6 x 28 hours



Pictures are taken from the Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and Lüth, 
from Ashcroft and Mermin and from several sources on the web.

Course 3: Motions of electrons and transport phenomena
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• Equation of motion of electrons 

• Drude and Sommerfeld models for conductivity

• Crystal momentum is not momentum!

• Motion of electrons in bands and the effective mass tensor

• Currents in bands and holes

• Scattering of electrons in bands

• Electrical conductivity of metals

• Quantum oscillations and the topology of Fermi surfaces

• Quantum Hall effect

Pictures are taken from the Solid State Course by Mark Jarrel (Cincinnati University), from the book of 
Ibach and Lüth, from the book of Ashcroft and Mermin and from several sources on the web.

Course 3: Motions of electrons and transport phenomena



Classical equation of motion in E and B field:

without collisions

with collisions

• steady-state average velocity

• current density

Equation of motion of electrons
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Drude model for conductivity

Paul Drude
(1863-1906)

Classical model: dilute gas of electrons
• neglect interactions with other electrons
and ions between collisions 

– independent electron approximation
– free electron approximation

• collisions probability 1/τ
(time between collisions τ)

• thermal equilibrium through collisions
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ρ = resistivity
σ = conductivity

electron transport with 
vav=vD = drift velocity

τ ~ 10-14 - 10-15 s, vT ~ 105 m/s
mean free path l = vTτ = 1-10 Å

- Maxwell-Boltzmann
velocity distribution

- equipartition of energy
1/2 mvT

2 = 3/2 kBT

Important failure Drude: 
mean free path l can be >> 
interatomic distance



• Quantum mechanical description

• Fermi-Dirac velocity distribution
• Semi classical energy gain electrons

• EOM

•

Sommerfeld model for conductivity
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mean free: l = vFτ (use Fermi velocity!)
example copper: vF= 1.6x106 m/s
τ ~ 2x10-9 at 4K → l4K = 3x10-3 m
τ ~ 2x10-14 at 300K → l300K = 3x10-8 m

m
kv F

F

r
hr =

rkie
V

rr⋅= 1ψ

Fermi sphere

m

k
E

F
F 2

22
r

h
=

Fermi velocity

Fermi energy

k
m

kEv k

rhr

h

r =∇= )(1

free electrons only!

displaced
in k space

xx Eek
h

τδ −=
stationary state

m
ne τσ

2

=

Like Drude!

“drift k”

Sommerfeld works also at low T!



• Free electron with energy εk in state ψk

Momentum expectation value free electrons

• Bloch electrons

Intermezzo: Crystal momentum is not momentum!
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• the real world: electron state is wave packet

• group velocity and dispersion

• velocity of crystal electron
depends on dispersion E(k)

Motion of electrons in bands and effective mass tensor
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Velocity of crystal electron
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Example:
tight binding dispersion relation

velocity

velocity is constant at fixed k
very different from classical picture
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• rate of change of group velocity component

with                       →

• effective mass tensor (inverse)

• eq. of motion
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effective mass approximation
m* constant  when

Negative 
effective
mass !

flatter band
→ higher m*
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Force due to electric field
is equal to time derivative of 
crystal momentum

Bloch state evolves,
after time ∆t:

Crystal (Bloch) electron in electric field

when state reaches BZ
k= π/a → -π/a
Bloch oscillations
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NB Scattering prevents
observation Bloch osc. 



Scattering produces
steady state

netto velocity E≠0 
→ current

Current for Bloch states in a half filled band 
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With τ ~ 10-14 s and E ~1 V/m
<< BZ ~1010 m-1

→ in reality small change
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• particle current density of dk at k 

• electrical current density
integrate over first Brillouin zone

• full band 

current = 0 → insulator

Currents in bands and holes
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density states in dk 1/(2π)3

different occupied states make different
contributions to the current density
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• partially filled band: E field redistributes k states
symmetry around k=0 lost

• current of positive charge, particles in unoccupied states 
(holes)
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• near top of the band
(k taken from top)

• holes at the top of the band have positive effective mass!

• insulators
conduct at T≠0 
n ~ exp(-Eg/kBT)     
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What did we learn:
• equation of motion →
electrons/holes accelerate

• Bloch waves in perfect lattice 
→ no resistivity 

This cannot be true:
• scattering!

– deviations from periodicity
(defects, lattice vibrations)

– electron-electron
collisions

Scattering of electrons in bands

scattering at a defect or phonon

momentum and energy conservation

scattering restricted to narrow k-shell near kF
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Boltzmann eq. describes 
“non-equilibrium steady state”
• driving force due to E and B field
• dissipation due to scattering

thermal equilibrium distribution E=B=0

change of f in time (t-dt) → t    + effect of scattering

expanding up to terms linear in dt
→ Boltzmann equation

Boltzmann equation and relaxation time approximation
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Electrical conductivity of metals

Particle current density

- linear effects in electric field (Ohms law)
- isotropic medium, cubic lattice
- linearized Boltzmann eq.
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Conductivity expressed as integral over the Fermi surface,
depends on v(EF) and τ(EF) 
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Electrical conductivity of metals
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Electrical conductivity of metals: examples

resistivity of heavy-
fermion compounds

resistivity of superconducting 
cuprates: La2-xSrxCuO4



Motion of electrons and holes in magnetic field 
Lorentz force

for wave packet mv=hk

Electrons move:
• in plane ⊥ B
• tangential to surface of 
constant E(k)

Quantum oscillations and the topology of Fermi surfaces
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Free electrons
S=πk2 and E= h2k2/2m
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Landau quantization

de Haas-van Alphen effect

de Haas       van Alphen
(1878-1960) (1906-1967)
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Some numbers:
• period T = 2π/ωc = 3.6x10-11 s in 1 T

• quantum number: (n+1/2)hωc ~ EF
→ for silver EF = 5.5 eV 
→ n ~ 4.6x104 for B = 1 T

• absence of thermal smearing: 
kBT/hωc < 1
kBT/hωc = kBm/he(T/B)=1.34(T/B) 

→ low T & high B B

dHvA signal (magnetization)
in silver
B || [1,1,1]   T=1.3 K
two periods→
neck and belly orbits
S111(belly)/S111(neck) = 51



GaAs/Al0.3Ga0.7As
In0.53Ga0.47As/InP

Quantum Hall effect in 2D systems

2D electron gas formed at interface of 
lattice matched heterostructures or quantum wells



G

Heterostructures and quantum wells

GaAsAlGaAs

E-gap

potential well

AlGaAsAlGaAs GaAs

E-gap Quantum well

Heterostructure



• Classically

• Hall resistance
– linear in field
– gives carrier concentration

and type (electrons or holes)
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mobility µ = vD/E
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• allows precise determination

fine structure constant

Klaus von Klitzing
Nobel Prize Physics 1985
“for the discovery of the 
quantum Hall effect”
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Energy levels in band i split into discrete 
Landau levels in magnetic field

n = integer Zeeman term
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Landau quantization

NL states per unit area
per Landau level

Filling factor ν
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Lev Landau
1908-1968
Nobel Prize Physics 1962
“for his pioneering 
theories for 
condensed matter”



Simple “explanation” QHE

• disorder/impurities →
extended and localised
states in Landau levels

• with increasing field B 
Landau levels pushed
to above EF →
plateau-plateau transitions

• conduction when Landau 
level in extended states

• width extended states → 0 
when T → 0
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• Energy distance between levels 
– kBT~ 25 meV near 300 K
– hωc ~ 1.6 meV/T (m*= 0.067me)
– kBT << hωc → T< 4 K

• Filling fraction
– typical n2D= 2x1015 m-2

– quantum limit ν =1 → B~ 8.25 T

*/meB=cω

high B/T needed

Typical numbers
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InGaAs/GaAs quantum well
n = 2x1015 m-2

T = 0.08-4.2 K



Fractional quantum Hall effect

fractional quantum Hall effect in high mobility GaAs/AlGaAs heterostructure
T= 0.15 K
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