UvA-VU Master Course: Advanced Solid State Physics

Contents in 2005:

- Diffraction from periodic structures (week 6, AdV)
- Electronic band structure of solids (week 7, AdV)
- Motion of electrons and transport phenomena (week 8, AdV)
- Superconductivity (week 9&10, RW)

Magnetism (week 11&12,JB)

Anne de Visser

Rinke Wijngaarden

Jürgen Buschow

Literature, software and homework

The course is based on the book:

H. Ibach and H. Lüth: Solid State Physics 3rd edition (Springer-Verlag, Berlin, 2003) ISBN 3-540-43870-X

See also:

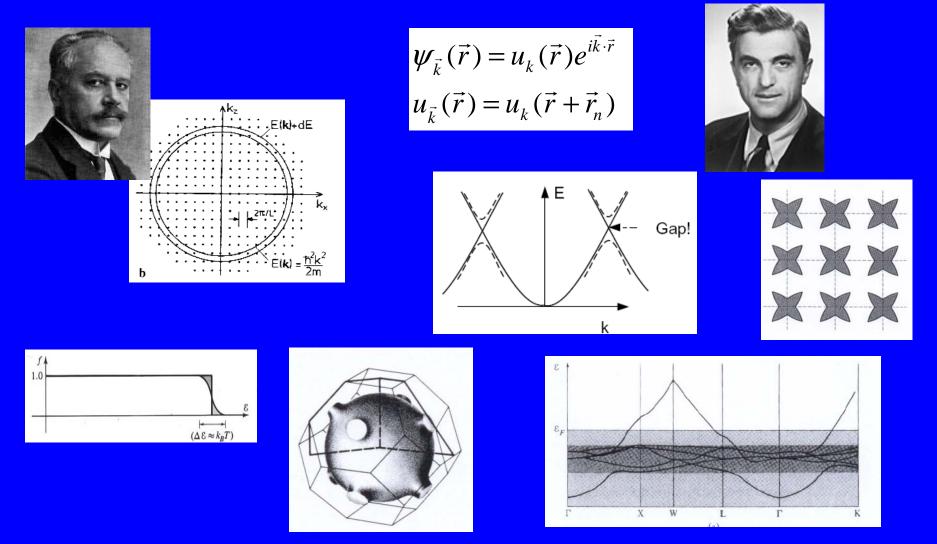
N.W. Ashcroft and N.D. Mermin: Solid State Physics (Saunders College Publ.) ISBN 0-03-083993-9

Computer simulations form an essential part of the course:

R.H. Silsbee and J. Dräger: Simulations for Solid State Physics (Cambridge University Press, Cambridge 1997) ISBN 0-521-59911-3 Software (freeware): <u>www.physics.cornell.edu/sss/</u>

Homework exercises will be distributed throughout the course Completing the course gives 6 ECTS \rightarrow ~ 6 x 28 hours

Course 2: Electronic band structure of solids



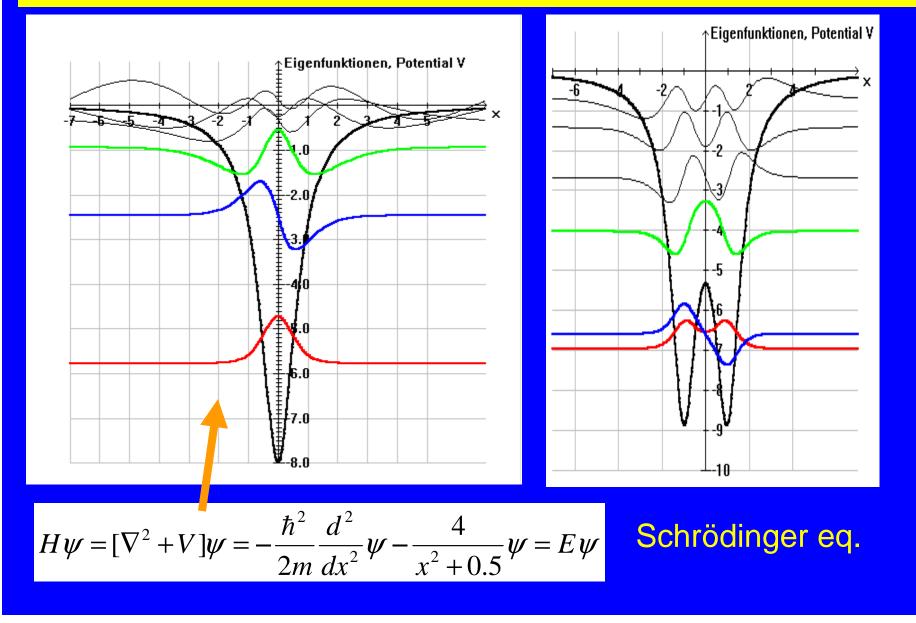
Pictures are taken from the Solid State Course by Mark Jarrel (Cincinnati University), from the book of Ibach and Lüth, from the book of Ashcroft and Mermin and from several sources on the web.

Course 2: Electronic band structure of solids

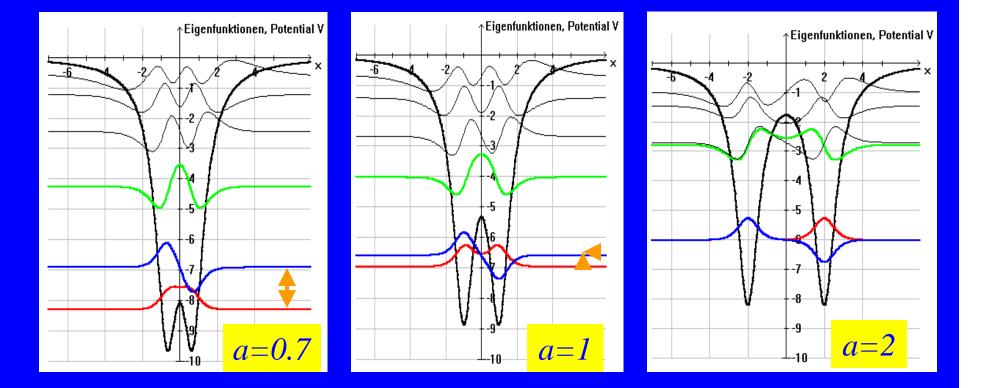
- Reminder: Coupled quantum wells
- Reminder: Free electrons in solids
- Effect of the lattice potential
- General symmetry Bloch states
- The nearly-free electron approximation
- The tight binding approximation
- Examples: Fermi surfaces / Band structure

Pictures are taken from the Solid State Course by Mark Jarrel (Cincinnati University), from the book of Ibach and Lüth, from the book of Ashcroft and Mermin and from several sources on the web.

Reminder: Coupled QWs; 1- and 2-atom electron states

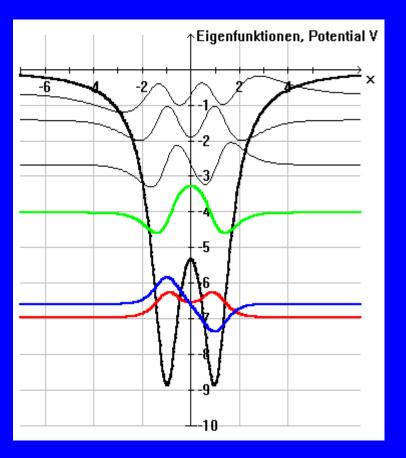


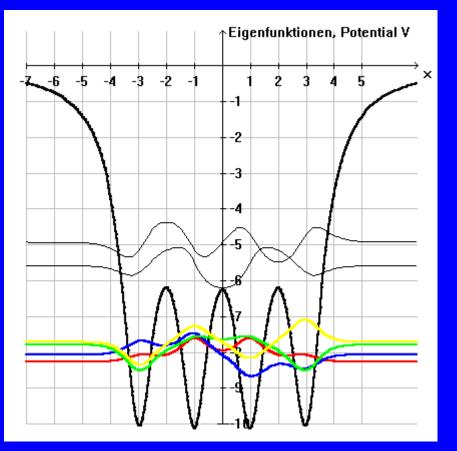
Effect of lattice spacing on electron states



$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi - \frac{4}{(x-a)^2 + 0.5}\psi - \frac{4}{(x+a)^2 + 0.5}\psi = E\psi$$

N states for N atoms

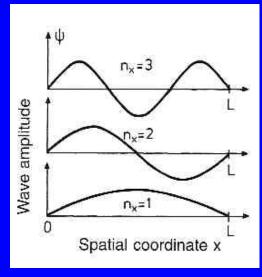




2 states

Reminder: Free electrons in solids

- Free electron gas
- Pauli exclusion principle
- Quantum Fermi-Dirac distribution
- N electrons in volume V=L³
- Hamiltonian with potential(r) = 0
- Periodic boundary conditions
- Propagating electron waves

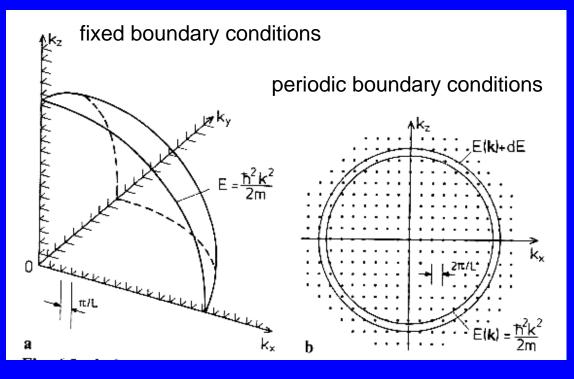


(fixed boundary conditions)

Arnold J.W. Sommerfeld (1868-1951)

Schrödinger equation: $-\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r}) = E\psi(\vec{r})$ General solution: $\psi(\vec{r}) = \frac{1}{\sqrt{V}} e^{i\vec{k}\cdot\vec{r}}$ Periodic boundary conditions : $\Psi(x+L, y+L, z+L) = \Psi(x, y, z)$ Components wave vector: $k_{x} = \frac{2\pi n_{x}}{I}, k_{y} = \frac{2\pi n_{y}}{I}, k_{z} = \frac{2\pi n_{z}}{I}$ Eigenenergies: $E(\vec{k}) = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2)$

Fermi sphere in k-space



Fermi energy :

$$E_F = \frac{\hbar^2}{2m} k_F^2$$

Fermi wave vector :

$$k_F = \left(\frac{3\pi^2 N}{V}\right)^{1/3}$$

Fermi temperature :

$$T_F = E_F / k_B$$

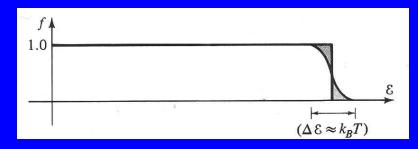
Fermi velocity :

$$\vec{v}_F = \left(\frac{\hbar}{m}\right) \vec{k}_F$$

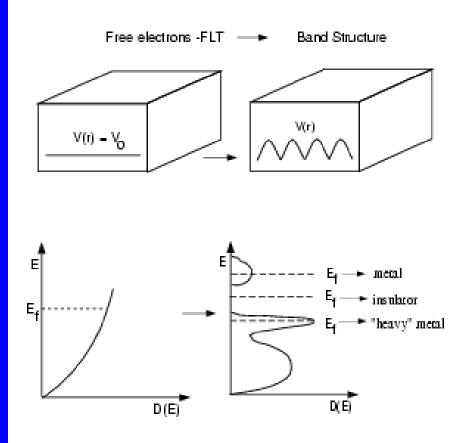
Fermi-Dirac distribution:

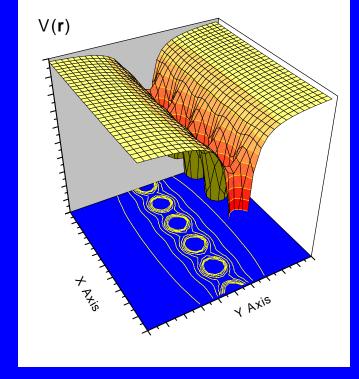
$$f_{FD}(\vec{v}) = \frac{(m/\hbar)^3}{4\pi^3} \frac{1}{\exp[(\frac{1}{2}mv^2 - \mu)/k_B T] + 1}$$

μ is chemical potential



Effect of the lattice potential





Fermi gas + constant potential V(r)=V₀ Fermi gas + periodic potential V(r)

General symmetry – Bloch states

Solve Schrödinger eq. with potential

$$H\psi(\vec{r}) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\psi(\vec{r}) = E\psi(\vec{r})$$

 $V(\vec{r}) = V(\vec{r} + \vec{r}_n)$

r_n direct lattice vector

with potential as Fourier series

$$V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} e^{i\vec{G}\cdot\vec{r}}$$

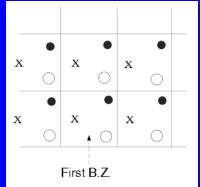
G reciprocal lattice vector

and general solution $\psi(\vec{r}) = \sum_{\vec{k}} C_{\vec{k}} e^{i\vec{k}\cdot\vec{r}}$

Schrödinger eq. in reciprocal space

$$\left(\frac{\hbar^2 k^2}{2m} - E\right)C_k + \sum_{\vec{G}} V_{\vec{G}}C_{\vec{k}-\vec{G}} = 0$$

couples C_k only with C_{k-G} , $C_{k-G'}$, $C_{k-G''}$, etc. for each k-vector in unit cell \rightarrow N problems index eigenvalues by **k**: $E_k = E(\mathbf{k})$



solution for each k

$$\psi_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} C_{\vec{k}-\vec{G}} e^{i(\vec{k}-\vec{G})\cdot\vec{r}} = \sum_{\vec{G}} C_{\vec{k}-\vec{G}} e^{-i\vec{G}\cdot\vec{r}} e^{i\vec{k}\cdot\vec{r}}$$

Fourier series over reciprocal lattice points

$$u_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} C_{\vec{k}-\vec{G}} e^{-i\vec{G}\cdot\vec{r}}$$

solution is modulated plane wave (Bloch theorem)

$$\Psi_{\vec{k}}(\vec{r}) = u_k(\vec{r})e^{i\vec{k}\cdot\vec{r}}$$
$$u_{\vec{k}}(\vec{r}) = u_k(\vec{r}+\vec{r}_n)$$

Bloch waves

Periodic in k

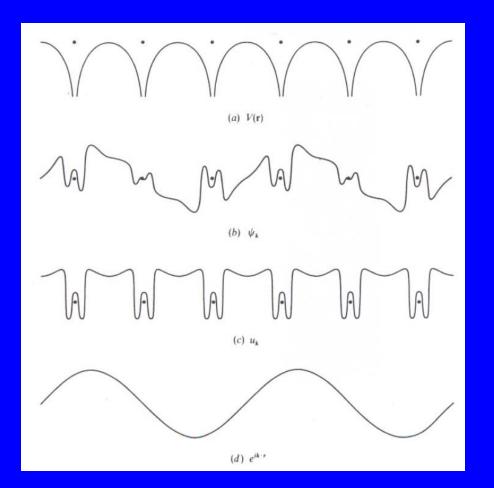
Periodicity G

$$\psi_{\vec{k}}(\vec{r}) = \psi_{\vec{k}+\vec{G}}(\vec{r})$$
$$H\psi_{\vec{k}} = E(\vec{k})\psi_{\vec{k}}$$
$$E(\vec{k}) = E(\vec{k}+\vec{G})$$

 \rightarrow

knowledge in 1st Brillouin zone is sufficient

Example Bloch wave



periodic lattice potential V(r)

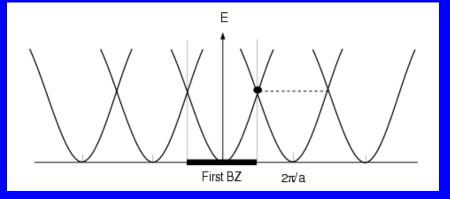
Bloch wave $\psi_k = u_k e^{ikr}$ (real part)

Bloch function u_k

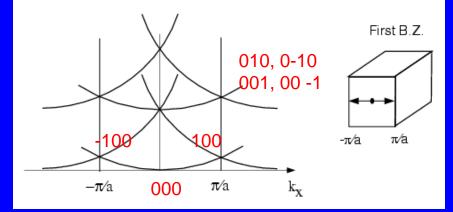
plane wave e^{ikr} (real part)

The nearly-free electron approximation: empty lattice case

$$E(\vec{k}) = E(\vec{k} + \vec{G}) = \frac{\hbar^2}{2m} |\vec{k} + \vec{G}|^2$$



1 D case; $G=h2\pi/a$ E(k) for vanishing potential (empty lattice) \rightarrow reduction to 1st BZ



3D cubic case; E(k) revolving parabola's \rightarrow complex behaviour in 1st BZ

Case of weak V_G

Degeneracy: At ZB ($k=\pi/a$) electron state involves at least two G values: G=0, $2\pi/a$

e waves
$$e^{ikx}, e^{i(k-G)x} \rightarrow e^{iGx/2}, e^{-iGx/2}$$

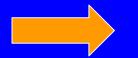
for exact solution (many **G**) solve: $\left(\frac{\hbar^2 k^2}{2m} - E_{\vec{k}}\right)C_{\vec{k}} + \sum_{\vec{c}}V_{\vec{G}}C_{\vec{k}-\vec{G}} = 0$

largest contributions for **G**=**G**₁ for which:

$$E_{\vec{k}} = E_{\vec{k} - \vec{G}_1} \approx \frac{\hbar^2 k^2}{2m}$$

$$C_{\vec{k}} = \frac{\sum_{\vec{G}} V_{\vec{G}} C_{\vec{k} - \vec{G}}}{E_{\vec{k}} - \frac{\hbar^2 k^2}{2m}}$$

$$C_{\vec{k}-\vec{G}_{1}} = \frac{\sum_{\vec{G}} V_{\vec{G}} C_{\vec{k}-\vec{G}_{1}-\vec{G}}}{E_{\vec{k}-\vec{G}_{1}} - \frac{\hbar^{2} \left|\vec{k}-\vec{G}_{1}\right|^{2}}{2m}}$$



 \rightarrow plan

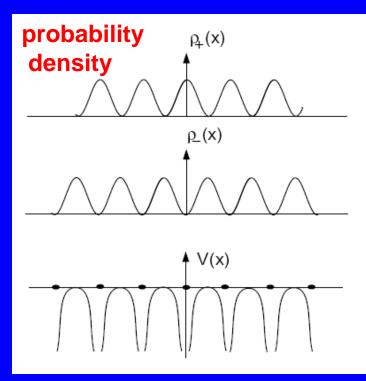
$$C_{\vec{k}} \approx C_{\vec{k}-\vec{G}_1} >> other \ C_{\vec{k}-\vec{G}} \ ; \ V_0 = 0 \ ;$$

 $|\mathbf{k}|^2 \cong |\mathbf{k} \cdot \mathbf{G}|^2 \leftarrow \text{Bragg condition}$

Case of weak V_G

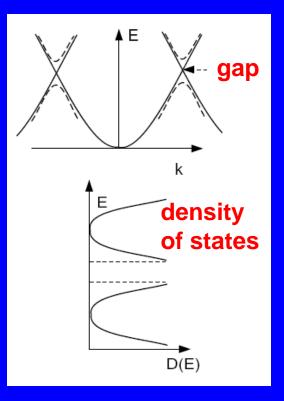
Standing waves: superposition of incoming and Bragg reflected wave

$$\rho_{+} = \psi_{+}^{*} \psi_{+} \sim \cos^{2} \pi x/a$$
$$\rho_{-} = \psi_{-}^{*} \psi_{-} \sim \sin^{2} \pi x/a$$



$$\Psi_{+} \sim (e^{iGx/2} + e^{-iGx/2}) \sim \cos \pi x/a$$
$$\Psi_{-} \sim (e^{iGx/2} - e^{-iGx/2}) \sim \sin \pi x/a$$

energy $E_+ < E_- \rightarrow gap$



General treatment

Largest deviation from free electron model at ZB when $|\mathbf{k}|^2 \cong |\mathbf{k} \cdot \mathbf{G}|^2 \leftarrow \text{Bragg condition}$ retain largest terms with $C_{\mathbf{k}}$ and $C_{\mathbf{k} \cdot \mathbf{G}}$

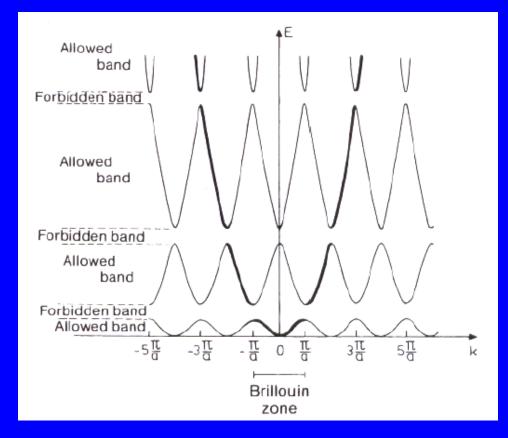
$$\begin{pmatrix} E - \frac{\hbar^2 k^2}{2m} \end{pmatrix} C_{\vec{k}} - V_{\vec{G}} C_{\vec{k}-\vec{G}} = 0 \\ \begin{pmatrix} E - \frac{\hbar^2 |\vec{k}-\vec{G}|^2}{2m} \end{pmatrix} C_{\vec{k}-\vec{G}} - V_{-\vec{G}} C_{\vec{k}} = 0 \end{cases} \begin{vmatrix} \left| \left(\frac{\hbar^2 k^2}{2m} - E \right) \right| & V_{\vec{G}} \\ V_{-\vec{G}} & \left(\frac{\hbar^2 |\vec{k}-\vec{G}|^2}{2m} - E \right) \end{vmatrix} = 0$$

with
$$E_{\vec{k}-\vec{G}} = \frac{\hbar^2 |\vec{k}-\vec{G}|^2}{2m}$$

$$E_{\pm} = \frac{1}{2} \left(E_{\vec{k}-\vec{G}}^{0} + E_{\vec{k}}^{0} \right) \pm \left[\frac{1}{4} \left(E_{\vec{k}-\vec{G}}^{0} - E_{\vec{k}}^{0} \right)^{2} + \left| V_{G} \right|^{2} \right]^{\frac{1}{2}}$$

At ZB $E^{0}_{\vec{k}-\vec{G}} = E^{0}_{\vec{k}}$ gap $\Delta E = E_{+} - E_{-} = 2 |V_{\vec{G}}|$

Energy dispersion E(k) 1 D lattice in extended zone scheme



 Bragg condition at BZ → backscattering destroys electronic states
2N independent states in each energy band

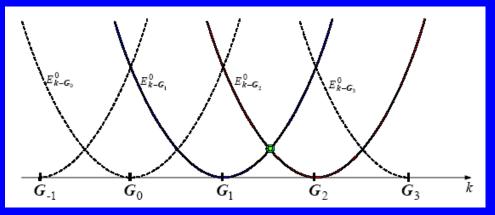
Example - Exercise

Consider a square lattice in two dimensions with a background potential $(2\pi x)$ (

 $-V_0 = 2.0 \text{ eV}$

$$V(x, y) = V_0 \cos\left(\frac{2\pi x}{a}\right) \cos\left(\frac{2\pi y}{a}\right)$$

- V(x,y) disturbs the system
- gaps are formed at the intersection of free electron bands



 Set up a 2x2 secular eq. to calculate the bandgap at the point (π/a, π/a) of the Brillouin zone

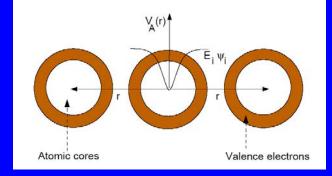
solve Schrödinger eq.: $H\psi(\vec{r}) = (H_0 + V(x, y))\psi(\vec{r}) = \mathcal{E}\psi(\vec{r})$

The tight-binding approximation

- crystal electron state is linear superposition of atomic orbitals
- potential V_A of free atom at r_n
- start from atomic problem with valence eigenstates φ_i and energy E_i

unperturbed Schrödinger eq. for atom n

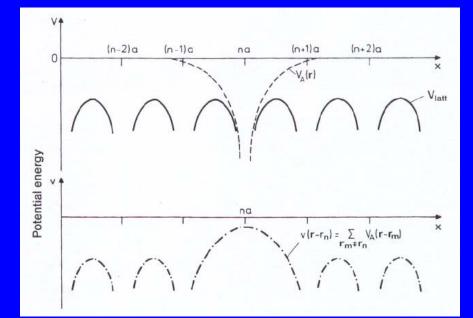
$$H_A(\vec{r}-\vec{r}_n)\varphi_i(\vec{r}-\vec{r}_n) = E_i\varphi_i(\vec{r}-\vec{r}_n)$$



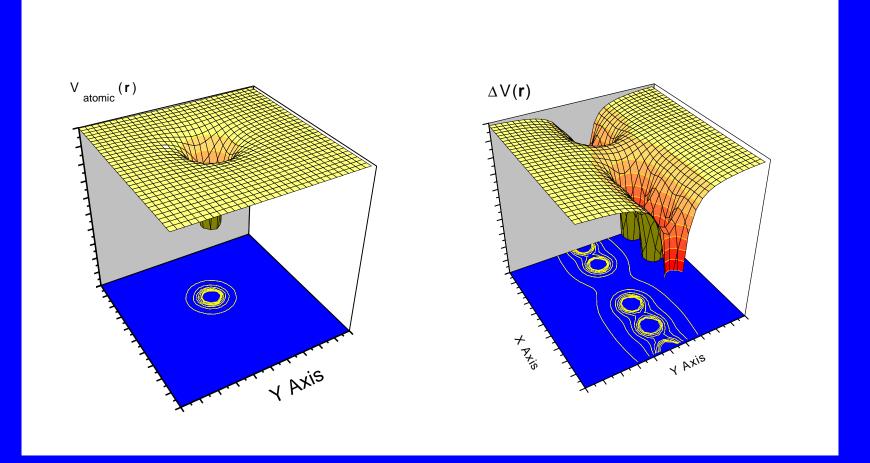
include perturbation due to atomic potential of all other atoms

$$H = H_{A} + v = -\frac{\hbar^{2}}{2m}\Delta + V_{A}(\vec{r} - \vec{r}_{n}) + v(\vec{r} - \vec{r}_{n})$$

$$v(\vec{r}-\vec{r}_n) = \sum_{m\neq n} V_A(\vec{r}-\vec{r}_n)$$



The tight-binding approximation



task: solve Hamiltonian \rightarrow solve for $\phi_k \cong \psi_k$ with $E'(\mathbf{k}) \rightarrow E(\mathbf{k})$ with ϕ_k is Bloch state: $\phi_{\mathbf{k}+\mathbf{G}} = \phi_k$ write ϕ_k as linear combination of atomic orbitals ϕ_i

$$H\psi_{\vec{k}}(\vec{r}) = E(\vec{k})\psi_{\vec{k}}(\vec{r})$$
$$E(\vec{k}) = \frac{\left\langle \psi_{\vec{k}} \left| H \right| \psi_{\vec{k}} \right\rangle}{\left\langle \psi_{\vec{k}} \left| \psi_{\vec{k}} \right\rangle}$$

 $\phi_i(\mathbf{r}-\mathbf{r}_1)$

 $\phi_i(\mathbf{r}-\mathbf{r}_2)$

$$\Psi_{\vec{k}} \approx \phi_{\vec{k}} = \sum_{n} a_{n} \varphi_{i} (\vec{r} - \vec{r}_{n}) = \sum_{n} e^{i\vec{k}\cdot\vec{r}_{n}} \varphi_{i} (\vec{r} - \vec{r}_{n}) ; a_{n} = e^{i\vec{k}\cdot\vec{r}_{n}}$$

$$\left\langle \phi_{\vec{k}} \left| \phi_{\vec{k}} \right\rangle = \sum_{n,m} e^{i\vec{k} \cdot (\vec{r}_n - \vec{r}_m)} \int \varphi_i^* (\vec{r} - \vec{r}_m) \varphi_i (\vec{r} - \vec{r}_n) d\vec{r}$$
$$\cong \sum_n \varphi_i^* (\vec{r} - \vec{r}_n) \varphi_i (\vec{r} - \vec{r}_n) d\vec{r} = N$$

neglect nn interaction: n=m

$$E(\vec{k}) \approx \frac{1}{N} \sum_{n,m} e^{i\vec{k} \cdot (\vec{r}_n - \vec{r}_m)} \int \varphi_i^* (\vec{r} - \vec{r}_m) [E_i + v(\vec{r} - \vec{r}_n)] \varphi_i (\vec{r} - \vec{r}_n) d\vec{r}$$

include (only) nearest neighbour interaction

Simple cubic case:

- isotropic hybridization
- ϕ_i spherical symmetry, s-wave

$$E(\vec{k}) \approx E_i - A - B \sum_m e^{i\vec{k} \cdot (\vec{r}_n - \vec{r}_m)}$$

with

$$A = -\int \varphi_i^* (\vec{r} - \vec{r}_n) v(\vec{r} - \vec{r}_n) \varphi_i (\vec{r} - \vec{r}_n) d\vec{r}$$
$$B = -\int \varphi_i^* (\vec{r} - \vec{r}_m) v(\vec{r} - \vec{r}_n) \varphi_i (\vec{r} - \vec{r}_n) d\vec{r}$$

r_m only nearest neighbour of r_n

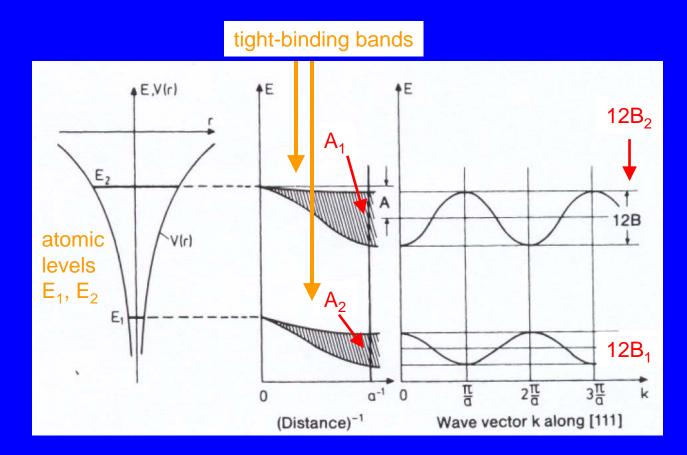
$$\vec{r}_n - \vec{r}_m = (\pm a, 0, 0); (0, \pm a, 0); (0, 0, \pm a)$$

$$E(\vec{k}) \approx E_i - A - 2B(\cos k_x a + \cos k_y a + \cos k_z a)$$

- A, B >0; band center E_i-A_i
- width of the band 12B
- for small k (near Γ -point): with k² = k_x²+k_y²+k_z²

$$E(\vec{k}) = E_i - A - 6B + Ba^2k^2$$

Simple cubic case: $E(\vec{k}) \approx E_i - A - 2B(\cos k_x a + \cos k_y a + \cos k_z a)$



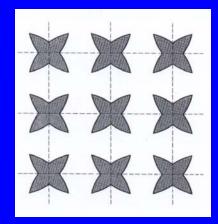
- energy width larger as overlap (hybridization) increases
- 2N electrons per band

Examples: Fermi surfaces / Band structure

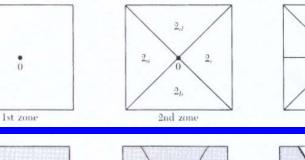
2D square lattice free electron gas with large Fermi sphere

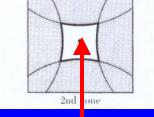
1st zone

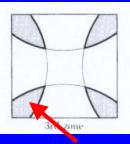
extended zone scheme



Brillouin zones in reduced zone scheme







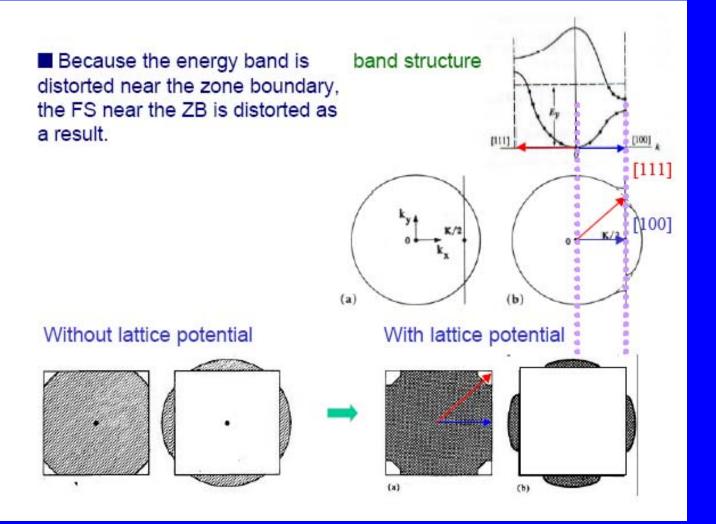
3rd zone

hole like

electron like FS

3rd zone in periodic zone scheme

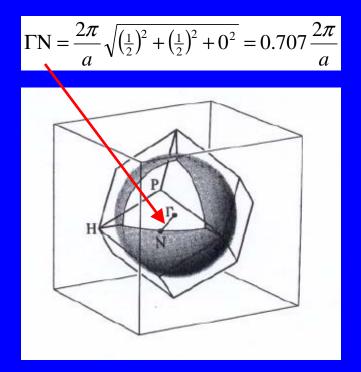
2D square lattice effect of lattice potential



Monovalent metals

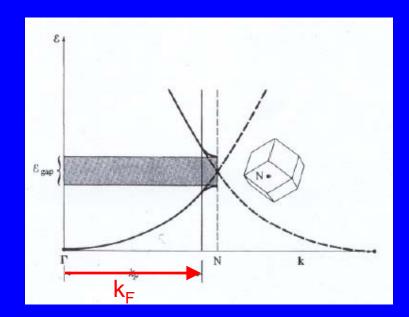
Alkali metals: Li 1s²s¹, Na [Ne]3s¹, K [Ar]4s¹, Rb [Kr]5s¹, Cs [Xe]6s¹

bcc lattice: density n = $2/a^3 = k_F^3/(3\pi^2) \rightarrow k_F^2 = 0.62$ ($2\pi/a$)



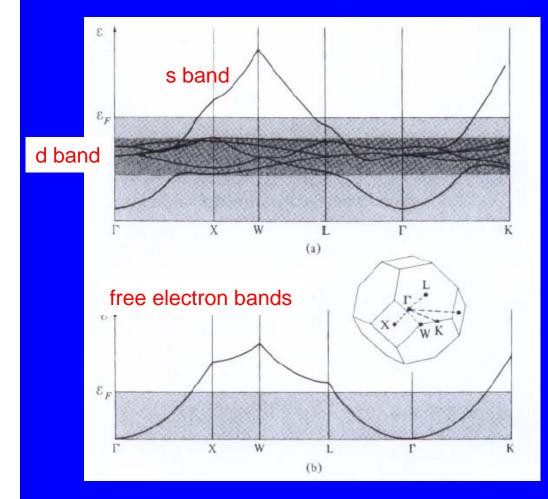
Fermi sphere contained in first BZ

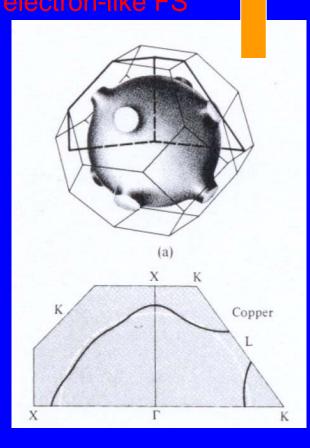
number of states $\frac{4\pi k_F^3}{3} \frac{V}{8\pi^3} = \frac{k_F^3}{6\pi^2} V$	
density of electrons $n = \frac{N}{V} = 2 \times \frac{k_F^3}{6\pi^2}$	$=\frac{k_F^3}{3\pi^2}$



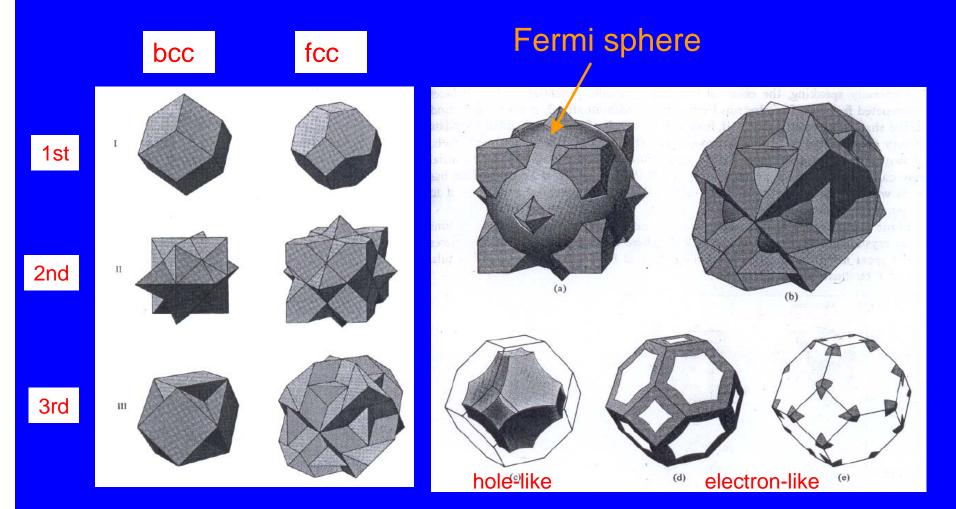
Monovalent metals

Noble metals: Cu [Ar]3d¹⁰4s¹ Ag [Kr]4d¹⁰4s¹ Au [Xe]4f¹⁴3d¹⁰4s¹ Bandstructure of copper (fcc lattice): 6 bands





A tetravalent fcc free electron metal

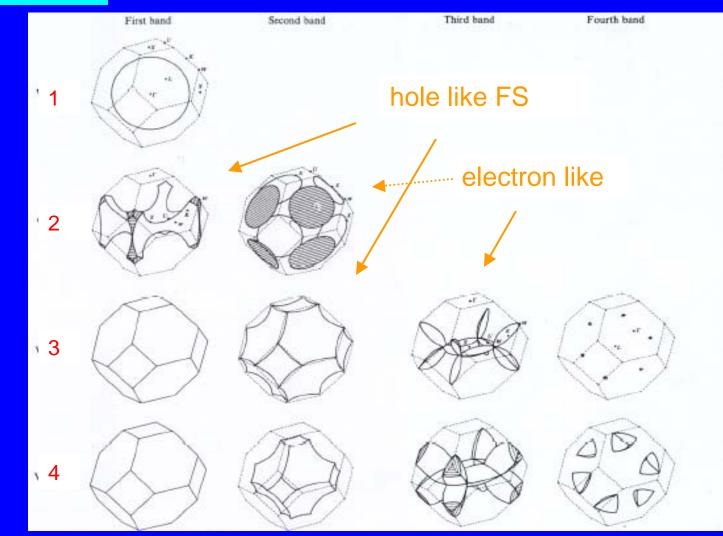


exterior surfaces Brillouin zones

Fermi surfaces for fcc lattice in reduced zone scheme

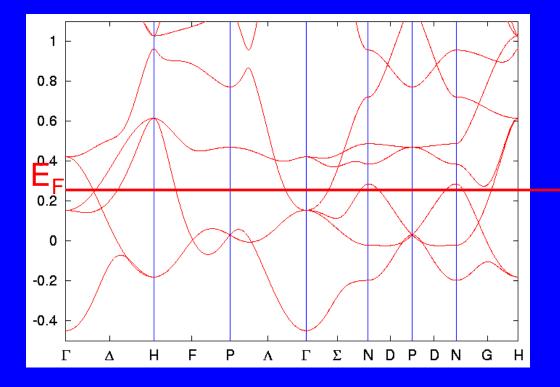
1-4 valent free electron surfaces

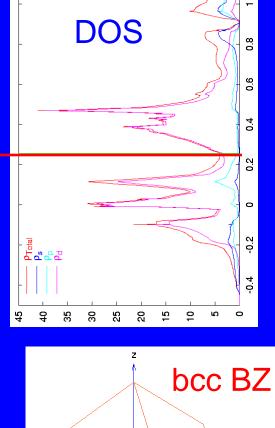
valence

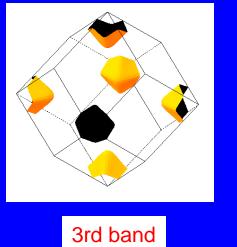


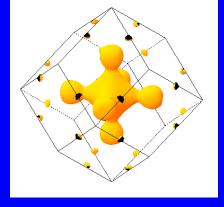
Fermi surfaces for fcc lattices in reduced zone scheme

Example bandstructure: 5d metal tungsten (bcc lattice)

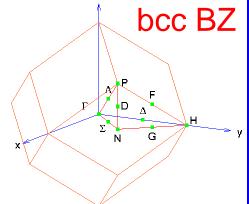








4th band



Periodic Table of the Fermi Surfaces of Elemental Solids

IB

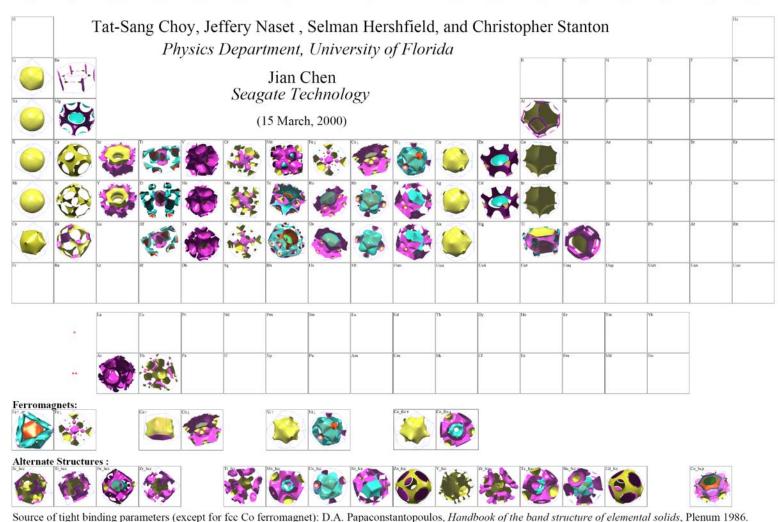
2B

http://www.phys.ufl.edu/fermisurface

7B

IA

2A



This work is supported by NSF, AFOSR, Research Corporation, and a Sun Microsystems Academic Equipment Grant.

another nice Fermi surface website: http://www.phy.tu-dresden.de/~fermisur/