
UvA-VU Master Course: Advanced Solid State Physics

Contents in 2005:
• Diffraction from periodic structures (week 6, AdV)
• Electronic band structure of solids (week 7, AdV)
• Motion of electrons and transport phenomena (week 8, AdV)
• Superconductivity (week 9&10, RW)
• Magnetism (week 11&12,JB)

Anne de Visser               Rinke Wijngaarden Jürgen Buschow



Literature, software and homework

The course is based on the book:
H. Ibach and H. Lüth: Solid State Physics
3rd edition (Springer-Verlag, Berlin, 2003)
ISBN 3-540-43870-X
See also:
N.W. Ashcroft and N.D. Mermin: Solid State Physics
(Saunders College Publ.)
ISBN 0-03-083993-9

Computer simulations form an essential part of the course:
R.H. Silsbee and J. Dräger: 
Simulations for Solid State Physics
(Cambridge University Press, Cambridge 1997)
ISBN  0-521-59911-3
Software (freeware): www.physics.cornell.edu/sss/

Homework exercises will be distributed throughout the course
Completing the course gives 6 ECTS → ~ 6 x 28 hours



Pictures are taken from the Solid State Course by Mark Jarrel (Cincinnati University), from the book of 
Ibach and Lüth, from the book of Ashcroft and Mermin and from several sources on the web.

Course 2: Electronic band structure of solids
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• Reminder: Coupled quantum wells

• Reminder: Free electrons in solids

• Effect of the lattice potential 

• General symmetry – Bloch states

• The nearly-free electron approximation

• The tight binding approximation

• Examples: Fermi surfaces / Band structure 

Pictures are taken from the Solid State Course by Mark Jarrel (Cincinnati University), from the book of 
Ibach and Lüth, from the book of Ashcroft and Mermin and from several sources on the web.

Course 2: Electronic band structure of solids



Reminder: Coupled QWs; 1- and 2-atom electron states
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Effect of lattice spacing on electron states

a=2a=1a=0.7



2 states 4 states

N states for N atoms



Reminder: Free electrons in solids

Arnold J.W. Sommerfeld
(1868-1951)

• Free electron gas
• Pauli exclusion principle
• Quantum Fermi-Dirac distribution
• N electrons in volume V=L3

• Hamiltonian with potential(r) = 0
• Periodic boundary conditions
• Propagating electron waves 
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Fermi sphere in k-space

Fermi-Dirac distribution:

µ is chemical potential
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Effect of the lattice potential

Fermi gas + 
constant potential
V(r)=V0

Fermi gas +
periodic potential
V(r)

V(r)

Y Axis

X Axis



Solve Schrödinger eq. with potential

with potential as Fourier series 

and general solution

Schrödinger eq. in reciprocal space

couples Ck only with Ck-G, Ck-G´, Ck-G´´ , etc.
for each k-vector in unit cell → N problems
index eigenvalues by k: Ek=E(k) 

General symmetry – Bloch states
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solution for each k

Fourier series over reciprocal lattice points

solution is modulated plane wave (Bloch theorem)

Bloch waves

Periodic in k

Periodicity G                                     knowledge in 1st Brillouin
zone is sufficient
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Example Bloch wave

periodic lattice
potential V(r)

Bloch wave ψk= ukeikr

(real part)

Bloch function uk

plane wave eikr

(real part)



VG=0; symmetry requires:

The nearly-free electron approximation: empty lattice case

1 D case; G=h2π/a
E(k) for vanishing potential
(empty lattice)
→ reduction to 1st BZ

3D cubic case;
E(k) revolving parabola’s →
complex behaviour in 1st BZ
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Degeneracy: At ZB (k=π/a) electron state involves at least 
two G values: G=0, 2π/a
→ plane waves 

for exact solution (many G) solve:

largest contributions for G=G1 for which:

|k|2 ≅|k-G|2 ← Bragg condition

Case of weak VG
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Standing waves: 
superposition of incoming
and Bragg reflected wave

Case of weak VG
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Largest deviation from free electron model at ZB when 
|k|2 ≅|k-G|2 ← Bragg condition
retain largest terms with Ck and Ck-G

with

At ZB                         gap

General treatment
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Energy dispersion E(k) 1 D lattice in extended zone scheme

• Bragg condition at BZ →
backscattering destroys electronic states

• 2N independent states in each energy band 



Consider a square lattice in two dimensions with
a background potential
- V0 = 2.0 eV
- V(x,y) disturbs the system
- gaps are formed at the 
intersection of 
free electron bands

• Set up a 2x2 secular eq. to calculate 
the bandgap at the point (π/a, π/a) of the Brillouin zone

solve Schrödinger eq.:

Example - Exercise
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- crystal electron state is linear superposition of atomic orbitals
- potential VA of free atom at rn
- start from atomic problem with valence
eigenstates ϕi and energy Ei

unperturbed Schrödinger eq. for atom n

include perturbation due to atomic 
potential of all other atoms   

The tight-binding approximation

)()()( niininA rrErrrrH rrrrrr −=−− ϕϕ

)()(
2

2

nnAA rrvrrV
m

vHH rrrrh −+−+∆−=+=

∑
≠

−=−
nm

nAn rrVrrv )()( rrrr



The tight-binding approximation

V
atomic

( r )

Y Axis

∆ V(r)

Y Axis

X Axis
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with φk is Bloch state: φk+G = φk
write φk as linear combination of atomic orbitals ϕi
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Simple cubic case:
- isotropic hybridization 
- ϕi spherical symmetry, s-wave

with

in the case of simple cubic lattice

- A, B >0; band center Ei-Ai
- width of the band 12B
- for small k (near Γ-point):
with k2 = kx

2+ky
2+kz
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Simple cubic case:

- energy width larger as overlap (hybridization) increases
- 2N electrons per band

12B2

12B1

A1

A2
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r
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atomic
levels
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Examples: Fermi surfaces / Band structure

2D square lattice free electron gas with large Fermi sphere
extended zone scheme Brillouin zones in reduced zone scheme

3rd zone in periodic zone scheme

hole like      electron like FS



2D square lattice
effect of lattice potential 



Monovalent metals

Alkali metals: Li 1s2s1, Na [Ne]3s1, K [Ar]4s1, Rb [Kr]5s1, Cs  [Xe]6s1

bcc lattice: density n = 2/a3 = kF
3/(3π2) → kF= 0.62 (2π/a)

Fermi sphere contained in first BZ
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Monovalent metals
Noble metals: Cu [Ar]3d104s1

Ag [Kr]4d104s1

Au [Xe]4f143d104s1

Bandstructure of copper (fcc lattice): 6 bands

d band

free electron bands

s band
free electron-like FS



A tetravalent fcc free electron metal

exterior surfaces 
Brillouin zones

bcc

Fermi surfaces for fcc lattice
in reduced zone scheme

2nd

3rd

1st

fcc Fermi sphere

hole-like electron-like



1

valence

2

3

4

1-4 valent free electron surfaces

Fermi surfaces for fcc lattices in reduced zone scheme

hole like FS

electron like



Example bandstructure: 5d metal tungsten (bcc lattice)

EF

DOS

bcc BZ

3rd band 4th band



another nice Fermi surface website: http://www.phy.tu-dresden.de/~fermisur/


