
UvA-VU Master Course: Advanced Solid State Physics

Contents in 2005:
• Diffraction from periodic structures (week 6, AdV)
• Electronic band structure of solids (week 7, AdV)
• Motion of electrons and transport phenomena (week 8, AdV)
• Superconductivity (week 9&10, RW)
• Magnetism (week 11&12,JB)
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Literature, software and homework

The course is based on the book:
H. Ibach and H. Lüth: Solid State Physics
3rd edition (Springer-Verlag, Berlin, 2003)
ISBN 3-540-43870-X
See also:
N.W. Ashcroft and N.D. Mermin: Solid State Physics
(Saunders College Publ.)
ISBN 0-03-083993-9

Computer simulations form an essential part of the course:
R.H. Silsbee and J. Dräger: 
Simulations for Solid State Physics
(Cambridge University Press, Cambridge 1997)
ISBN  0-521-59911-3
Software (freeware): www.physics.cornell.edu/sss/

Homework exercises will be distributed throughout the course
Completing the course gives 6 ECTS → ~ 6 x 28 hours



Course 1: Diffraction from periodic structures
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Course 1: Diffraction from periodic structures

• Question: how do we learn the structure of a periodic solid?
• Diffraction of waves or particles with λ ≈ lattice constant
• Coherent scattering events give Bragg peaks 

Bragg condition:
2dsinθ = λ

scattering vector:
K=k-k0

This picture (and some others!) taken from the Solid State Course by Mark Jarrel (Cincinnati University).



Intermezzo periodic structures

Fruit

TEM silicon                           STM graphite              ???



Lattice vectors and unit cells
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real or direct lattice



The 14 Bravais lattices
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real lattice                               reciprocal lattice

Inside out: the reciprocal lattice

length reciprocal lattice vector = 2π/(length direct vector)



Probe beams differ in:
• wave length λ = h/p
• scattering cross section
• magnetic moment

For lattice constant a ~10-10 m ~ λ =2πh/p
the relevant energy scale is
• electrons: Ee = p2/2me~ 300 eV
• neutrons:  En = p2/2mn~  0.6 eV
• photons: Eph= pc ~ 12 keV

Typical probes:
• electrons (10 eV - 1 keV)
• neutrons  (10 meV - 1 eV)
• x-ray photons (1 keV -100 keV)

Probe beams

The de Broglie wavelength 
(λ=2π/k) of photons, 
electrons, neutrons, helium 
atoms as function of energy



Different probe beams for different research
• electrons typically penetrate only ~ 50 Å and are used to

probe the surface (e.g. LEED)

• neutrons scatter at nuclei and carry magnetic moment
used for phonon dispersion, resolving magnetic structures
etc.

• x-rays, wide energy range, resolve crystallographic
structures of solids, complex molecules etc. 

Clean, not oxidized,
surfaces needed!



Used to determine the value of the lattice parameters 
accurately. 

If a monochromatic x-ray beam is directed at a single 
crystal, then only one or two diffracted beams may result. 

If the sample consists of some tens of randomly orientated 
single crystals, the diffracted beams lie on the surface of 
several cones. 

A sample of some hundreds of crystals (i.e. a powdered 
sample) show that the diffracted beams form continuous 
cones. Each cone intersects the film giving diffraction lines. 
For every set of crystal planes, by chance, one or more 
crystals will be in the correct orientation to give the correct 
Bragg angle to satisfy Bragg's equation. Each diffraction
line is made up of a large number of small spots, each from 
a separate crystal. 

Example diffraction experiment: powder diffraction



Diffraction angle θ is:

Bragg’s law:

Interplanar spacing d, lattice parameter a

Indexing a powder pattern

⎟
⎠
⎞

⎜
⎝
⎛ −==

W
Sor

W
S 21 1

22
πθπθ

222 lkh
adhkl

++
=

θλ sin2dn =

( )222
2

2
2

4
sin lkh

a
++= λθ

λ=1.54 Å, W= 180 mm, cubic structure

Structure factor calculation:
face centered cubic
h,k,l all even or odd

a = 4.02 Å



Diffraction in “kinetic” approximation



- single scattering, emission of spherical waves
- coherent scattering, phase relation fixed
- source Q, scattering center P, observer B
- approximate spherical wave by plane wave at large distance from source
- scattering material with scattering density ρ(r) emits spherical waves
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General theory of diffraction in “kinetic” approximation



with scattering vector

In diffraction experiment intensity is measured

- intensity is absolute square of the Fourier transform of 
the scattering density ρ(r) 

- if one could measure the amplitude(time) (phase), structure could be 
determined by inverse Fourier transform, this is NOT possible

Procedure: choose possible crystal structure (symmetry)
→ calculate diffraction pattern → compare with measured pattern 
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Forward scattering Laue
image of a hexagonal crystal



If material consists of single type of atoms
scattering density at position i

Decompose Patterson function in
- correlation of atom with itself and
- correlation of atom with all other atoms

For disordered systems analysis facilitated by Patterson function:
P(r) = the autocorrelation function of the scattering density
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intensity is Fourier transform of
Patterson function
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f is “atom factor”: measure of the magnitude 
of the scattering amplitude of an atom

if r′ = lattice vector P(r′) peaks



Pair correlation function for amorphous
silicon and liquid iron (1833 K)

g(r) ∝ Fourier transform of S(K)-1

structure factor S(K) and pair correlation function g(r)

∫ ⋅+=∝ rderg
V
NKSKI rKi rrr rr

)(1)()(

rdrrrrgf
V
N r)'()()'(2 += ∫ ρρ

N = number
of atoms

V = volume

amorphous
silicon dioxide



one dimensional example: periodic array of atoms, 
translational invariance
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Fourier series

generalization to three dimensions
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and cyclic permutations

Scattering from periodic structures



2
)(

2

2
0

'
)( ∫∑ ⋅−∝ rde

R
A

KI rKGi

G
G

rr rrr

r
ρ

otherwiseandKGifVrde rKGi 0~)(
rrrrrr

==∫ ⋅−

Insert Fourier series of periodic array ρ(r) in expression for intensity

Laue scattering condition: constructive interference will occur when
the change in wave vector is a 
vector of the reciprocal lattice
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with                                       intensity 

diffraction peaks observed at
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Miller indices - distance between planes

Miller indices (h, k, l):
integered inversed direct space coordinates
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Example: (m,n,o) = (0.5,1,1) → (h,k,l) = (2,1,1)

The reciprocal lattice vector
or Ghkl is directed perpendicular to the plane (h,k,l)
its length relates to the distance between the 
planes
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Laue condition
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Laue condition is equivalent to Bragg condition

Bragg condition
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The Ewald construction to determine if the conditions are correct
for obtaining a Bragg peak
• select a point in k space as origin. 
• draw the incident wave vector k0 to the origin. 
• from the base of k0 wave vector k in all possible directions to form a sphere 
(elastic scattering |k|=|k0|). 

• at each point where this sphere intersects a lattice point in k space,
there will be a Bragg peak with G = k - k0. 

For instance 8 peaks in the example below. 

single crystal
aligned with 
respect to k0

for small changes
in k0 no Bragg peaks!

reciprocal lattice
origin



Structure factor and atomic form factor

• position of Bragg peaks ← Laue condition (reciprocal lattice)
• intensity of Bragg peaks ← structure factor and atomic form factor

structure factor → interference of waves
scattering from different atoms

atomic form factor →
interference of waves 
scattering from different 
parts of the atom



Intensity is proportional to Fourier coefficients of 
scattering density

integrate over basis cell and sum over N cells
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with N/V=1/Vc with Vc volume of cell

Next: calculate scattering density due to different atoms in cell
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With different atomic density of different elements in the cell: ρα(r′)

atomic scattering factor

structure factor

for lattices with one atom per unit cell S=f
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Evaluate fα using spherical coordinates

θ is polar angle between G and r′, integrating over θ and ϕ

and

with  G = K = 2k0sinθ and k0 = 2π/λ

→ atomic scattering function is function f(sinθ/λ)

For θ=0                                                 integral of scattering density
over the atomic volume 
∝ Z = number electrons

atom number (for x-rays)
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In 3d metals the orbital moment is mostly quenched (L=0)
due to the crystalline electric field. The presence of an 
orbital component can be measured by 
the atomic form factor.

Example: atomic form factor chromium
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Magnetic form-factor 
measured at the h0l.  
Bragg reflections of Cr2O3. 
The smooth curve is the 
spin-only free ion form-
factor for Cr3+ normalised
to 2.5 µB.

j0 and j2 describe 
radial distribution spin 
and current



The structure factor describes the interference from waves
scattered from different atoms in the unit cell

Example for centered lattice

since rα is in the unit cell u,v,w < 1

For body-centered cubic lattice and f1= f2= f

→ systematic extinctions

∑ ⋅−=
α

α
αrGi

hkl
hklefS

rr

∑ ++−=
α

π
α

ααα )lwkvhu(i
hkl efS 2

321 awavaur rrrr
αααα ++=

evenlkhforf
oddlkhfor)e(fS )lkh(i

hkl

++
++=+= ++−

2
01 π

).,.,.(rand),,(r 505050000 21 ==

Example: structure factor cubic lattice



For our example of the powder diffraction pattern:
for face centered cubic lattice and f1= f2= f

With help of the structure factor one can unravel complicated 
crystallographic and magnetic structures like these:
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antiferroquadrupolar state of NpO2 magnetic phase of DyFe4Al8


