Thermal expansion of CeCu$_{6-x}$Au$_x$

P. Estrelaa, A. de Vissera, O. Stockertb,c, K. Grubed, H. v. Löhneysenb,d,*

aVan der Waals-Zeeman Institute, Universiteit van Amsterdam, 1018 XE Amsterdam, The Netherlands
bPhysikalisches Institut, Universität Karlsruhe, D-76128 Karlsruhe, Germany
cMax-Planck-Institut für chemische Physik fester Stoffe, D-01187 Dresden, Germany
dForschungszentrum Karlsruhe, Institut für Festkörperphysik, D-76021 Karlsruhe, Germany

Abstract

CeCu$_{6-x}$Au$_x$ orders antiferromagnetically for $x > 0.1$. The ordering wave vector changes drastically between $x = 0.4$ and 0.5, while the Néel temperature $T_N(x)$ varies linearly between $x = 0.1$ and 1.0. The linear thermal expansion coefficient α shows for $x = 0.3$ a positive jump $\Delta \alpha$, while $\Delta \alpha_b$ and $\Delta \alpha_c < 0$. When increasing x to $x = 0.5$, $\Delta \alpha_a$ and $\Delta \alpha_b$ change sign, apparently reflecting the underlying change of the magnetic ordering wave vector.

© 2003 Elsevier B.V. All rights reserved.

PACS: 74.62.Dh; 74.62.Fj; 65.60.ta; 75.20.Hr

Keywords: Cerium compounds; Magnetic instability; Quantum phase transition; Pressure effect; Thermal expansion

While CeCu$_6$ is a heavy-fermion system without magnetic order, except perhaps at ultra-low temperatures ($T \sim 3$ mK), CeCu$_{6-x}$Au$_x$ is an incommensurate antiferromagnet for $x > x_c \approx 0.1$, with the Néel temperature T_N varying linearly in the range $0.1 < x \leq 1$ [1]. The latter sample, i.e. CeCu$_{5.5}$Au with $T_N = 22$ K, is in fact a stoichiometric compound with the Au atoms sitting exclusively at the Cu(2) site of the CeCu$_6$ structure [2]. For $x > 1$ T_N decreases again. The ordering wave vectors determined from elastic neutron scattering reside within the reciprocal a^*e^* plane, with however a drastic change between $x = 0.4$ and 0.5 [3]. (Here we use the orthonormatic notation to denote the lattice vectors, neglecting the small monoclinic distortion by $\sim 1.5^\circ$ for CeCu$_6$, which is rapidly suppressed with increasing x and vanishes at $x = 0.14$ [4].) For $x = 0.5$ and 1 the ordering wave vector \mathbf{Q} lies on the a^*-axis, i.e. $\mathbf{Q} = (0.590 0 0)$ for $x = 0.5$ and $\mathbf{Q} = (0.560 0 0)$ for $x = 1.0$. However, for $x < 0.5$, \mathbf{Q} is distinctly different: $\mathbf{Q} = (0.625 0.275)$ for $x = 0.2$ and $\mathbf{Q} = (0.62 0.253)$ for $x = 0.3$. A similar \mathbf{Q} vector was found for $x = 0.4$ [5]. We limit the discussion to long-range order with resolution-limited Bragg peaks and do not consider short-range order effects [3]. The drastic change of \mathbf{Q} between $x = 0.4$ and 0.5 (see inset of Fig. 1) contrasts with the smooth linear evolution of $T_N(x)$ and presents a major puzzle. Furthermore, while hydrostatic pressure leads to a decrease of T_N for all x [1,6], uniaxial pressure measurements performed on $x = 0.2$ single crystals indicate a decrease of T_N for uniaxial pressure parallel to the b and e axes but, surprisingly, an increase for uniaxial pressure parallel to the a-axis [7,8]. Here we report thermal expansion measurements to shed some light on these issues.

The thermal expansion coefficient $\alpha_i (i = a, b, c)$ was measured between 0.35 and 10 K with a parallel-plane capacitance dilatometer in a 3He cryostat. The absolute error in α_i is about 3×10^{-7} K$^{-1}$, which is mainly attributed to small differences in the effective area of the capacitor plates between different runs. The error in the volume expansion $\alpha_V = \alpha_a + \alpha_b + \alpha_c$ amounts to 5×10^{-7} K$^{-1}$.

Figs. 1 and 2 show the thermal expansion coefficients α_i versus T for $x = 0.3$ and $x = 0.5$, respectively. The discontinuities $\Delta \alpha_i$ at $T_N = 0.5$ and 1 K, respectively, are clearly visible, although the lower measuring temperature limit of 0.35 K makes the determination of the discontinuity for $x = 0.3$ somewhat uncertain. The main...
Table of Contents

1. Introduction

2. Experimental

3. Results

4. Discussion

5. Conclusion

References