Thermoelectric power and Shubnikov-de Haas effect in magnetic impurity-doped Bi$_2$Te$_3$ and Bi$_2$Se$_3$

V.A. Kulbachinskiia,*, A.Yu. Kaminskii, V.G. Kytin, A. de Visser

*a Low Temperature Physics Department, Physics Faculty, Moscow State University, GSP-2, Moscow 119992, Russia
b Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam 1018 XE, The Netherlands

Abstract

Shubnikov-de Haas and Hall effect measurements were carried out on the diluted magnetic semiconductors p-Bi$_{2-x}$Fe$_x$Te$_3$ and n-Bi$_{2-x}$Fe$_x$Se$_3$. By increasing the Fe content, the hole concentration decreases in p-Bi$_{2-x}$Fe$_x$Te$_3$, while the electron concentration increases in n-Bi$_{2-x}$Fe$_x$Se$_3$. This demonstrates that iron atoms act as donors in both type of materials. The Seebeck coefficient α increases in p-Bi$_{2-x}$Fe$_x$Te$_3$ with increasing Fe content, while it decreases in n-Bi$_{2-x}$Fe$_x$Se$_3$.

PACS: 72.15.Jf; 75.50.-y

Keywords: Bi$_{2-x}$Fe$_x$Se$_3$; Bi$_{2-x}$Fe$_x$Te$_3$; Shubnikov-de Haas effect; Thermopower

Recent experiments have demonstrated that it is possible to grow single crystals of the novel Fe-doped diluted magnetic semiconductors p-Bi$_{2-x}$Fe$_x$Te$_3$ and n-Bi$_{2-x}$Fe$_x$Se$_3$. Concentrations of Fe with $x \leq 0.08$ in the formula Bi$_{2-x}$Fe$_x$Te$_3$ and $x \leq 0.06$ in the formula Bi$_{2-x}$Fe$_x$Se$_3$ have been achieved. In Bi$_{2-x}$Fe$_x$Te$_3$ ferromagnetism was found with the Curie temperature, T_C, increasing as a function of x up to $T_C = 12$ K for $x = 0.08$ [1,2]. The easy-axis for magnetization is the C$_3$ crystallographic axis. In n-type Bi$_{2-x}$Fe$_x$Se$_3$ samples ferromagnetism was not detected.

Here, we report Shubnikov-de Haas (SdH) and Hall effects measurements carried out in a long-pulse (~1 s) high-magnetic field installation ($B_{max} = 40$ T) at $T = 4.2$ K. In Fig. 1, we show the oscillating part of the transverse magnetoresistivity $\Delta \rho = \rho(B) - \rho(0)$ for p-Bi$_{2-x}$Fe$_x$Te$_3$ and n-Bi$_{2-x}$Fe$_x$Se$_3$ samples. There is a single frequency in n-Bi$_{2-x}$Fe$_x$Se$_3$ and first and second harmonics in p-Bi$_{2-x}$Fe$_x$Te$_3$. The second harmonic in SdH in p-Bi$_{2-x}$Fe$_x$Te$_3$ is due to spin-splitting (see Fig. 1).

The data show a decreasing hole concentration with increasing x for p-Bi$_{2-x}$Fe$_x$Te$_3$, and an increasing electron concentration with increasing x in n-Bi$_{2-x}$Fe$_x$Se$_3$. Thus the Fe atoms act as donors in both materials. From the Shubnikov-de Haas frequencies the hole concentration, p, the electron concentration, n, and the Fermi-energy E_F were evaluated (see Table 1). Our results indicate that, while in n-Bi$_{2-x}$Fe$_x$Se$_3$ the electron system is degenerate ($kT \ll E_F$), in p-Bi$_{2-x}$Fe$_x$Te$_3$ the hole system cannot be treated as completely degenerate, nor as completely non-degenerate at 300 K ($kT \approx E_F$).

Alloys $A_xB^{VI}_3$ have excellent room temperature thermoelectric properties and have served as the backbone of the thermoelectric cooling technology. As such, the influence of magnetic iron doping on their thermoelectric properties should be studied. We have measured the thermoelectric power α, in the temperature range $77 \leq T \leq 300$ K (see Fig. 2). At 300 K, α increases in Bi$_{2-x}$Fe$_x$Te$_3$ due to Fe doping while in Bi$_{2-x}$Fe$_x$Se$_3$ α decreases. The thermoelectric power shows an almost linear decrease with decreasing temperature in all samples. The thermopower α is given by

$$\alpha(T) = \frac{k_B}{e} \left(\frac{(2r + 5)F_{r+3/2}(\eta)}{(2r + 3)F_{r+1/2}(\eta)} - \eta \right),$$

(1)
\[Z = \frac{E_F}{k_B T} \]

is the reduced Fermi energy, \(F_r(\eta) = \int [x^\prime/(e^{x^\prime-\eta} + 1)] dx \) is the Fermi integral and \(r \) a parameter characterizing the scattering mechanism; \(r = -\frac{1}{2} \) for acoustic phonon scattering, \(\frac{1}{2} \) for polar optical scattering and \(r = -\frac{1}{2} \) for ionized impurity scattering.

By fitting the data in Fig. 2 to Eq. (1), using \(E_F \) calculated from the SdH data, we have extracted the temperature dependence of \(r \) (see Fig. 3). The effective scattering parameter is not equal to \(-\frac{1}{2} \) and depends on doping. We conclude that the change of \(z \) is mainly due to the change in carrier concentration in both type of samples.

Table 1

<table>
<thead>
<tr>
<th>(p\text{-Bi}_{2-x}\text{Fe}_x\text{Te}_3)</th>
<th>(n\text{-Bi}_{2-x}\text{Fe}_x\text{Se}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(f(T)) (meV)</td>
</tr>
<tr>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>0.01</td>
<td>23</td>
</tr>
<tr>
<td>0.04</td>
<td>18</td>
</tr>
<tr>
<td>0.08</td>
<td>11</td>
</tr>
</tbody>
</table>

where \(\eta = E_F/k_B T \) is the reduced Fermi energy, \(F_r(\eta) = \int [x^\prime/(e^{x^\prime-\eta} + 1)] dx \) is the Fermi integral and \(r \) a parameter characterizing the scattering mechanism; \(r = -\frac{1}{2} \) for acoustic phonon scattering, \(\frac{1}{2} \) for polar optical scattering and \(r = -\frac{1}{2} \) for ionized impurity scattering.

By fitting the data in Fig. 2 to Eq. (1), using \(E_F \) calculated from the SdH data, we have extracted the temperature dependence of \(r \) (see Fig. 3). The effective scattering parameter is not equal to \(-\frac{1}{2} \) and depends on doping. We conclude that the change of \(z \) is mainly due to the change in carrier concentration in both type of samples.

References