Search for a quantum phase transition in \(\text{U(Pt}_1-x\text{Pd}_x)_3 \)

M.J. Grafa,*, R.J. Keizerb, A. de Visserb, S.T. Hannahsc

aDepartment of Physics, Boston College, Chestnut Hill, MA 02459, USA
bVan der Waals-Zeeman Inst., Univ. of Amsterdam, 1018XE Amsterdam, The Netherlands
cNational High Magnetic Field Lab., Florida State University, Tallahassee, FL 32310, USA

Abstract

Pd in \(\text{U(Pt}_1-x\text{Pd}_x)_3 \) suppresses the superconducting \(T_c \) to 0 K at \(x \geq x_c \). The resistivity below 1 K for \(x \leq 0.02 \) shows a deviation from Fermi liquid behavior described by \(\rho(T) = \rho_0 + AT^z \); \(z \) varies from 2 for \(x = 0 \) to 1.6 for \(x \approx x_c \). This suggests that a quantum phase transition (QPT) exists near \(x_c \). Transport for a sample with \(x = 0.004 < x_c \) has a pressure-independent exponent \(z = 1.77 \), suggesting that if a QPT exists it may be associated with the magnetic transition. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Heavy fermion; Quantum phase transition; Unconventional superconductivity; \(\text{U(Pt}_1 \)

Pd-substitution is a powerful technique for studying superconductivity, magnetism, and their interplay in \(\text{U(Pt}_1 \) 0.007 and induces a conventional AFM state for \(x \geq x_c \). The resistivity below 1 K for \(x \leq 0.02 \) shows a deviation from Fermi liquid behavior described by \(\rho(T) = \rho_0 + AT^z \); \(z \) varies from 2 for \(x = 0 \) to 1.6 for \(x \approx x_c \). This suggests that a quantum phase transition (QPT) exists near \(x_c \). Transport for a sample with \(x = 0.004 < x_c \) has a pressure-independent exponent \(z = 1.77 \), suggesting that if a QPT exists it may be associated with the magnetic transition. © 2000 Elsevier Science B.V. All rights reserved.

First, we examine the temperature-dependent resistivity of \(\text{U(Pt}_1-x\text{Pd}_x)_3 \) for \(x \leq 0.02 \) and for \(T \leq 1 \) K for a variety of polycrystal and single-crystal samples. Pure \(\text{U(Pt}_1 \) has a Fermi liquid-like low-\(T \) resistivity with a quadratic \(T \)-dependence. As Pd is substituted in for Pt, we observe a clear deviation from quadratic behavior. The quadratic term is thought to arise from spin-fluctuation scattering, and the resistivity can be written \(\rho(T) = \rho_0 + A(T/T_d)^2 \), where \(T_d \) is the spin-fluctuation temperature (roughly 18 K in pure \(\text{U(Pt}_1 \)). This holds only when \(T < T_d \). The observed deviation could be explained within a Fermi liquid picture if \(T_d \) was reduced by well over a factor of two for Pd concentrations of \(x = 0.005 \); this is inconsistent with thermodynamic measurements.

The data is best described by \(\rho(T) = \rho_0 + AT^z \), with \(z \) varying from 2 for \(x = 0 \) to 1.6 for \(x > x_c \); from limited data above \(x = 0.01 \) it appears that \(z \) either stays constant, or increases weakly, for \(x > x_c \) (see Fig. 2). This suggests that a quantum phase transition (QPT) exists near \(x_c \), associated with either \(T_c \) or the Néel temperature \(T_N \) approaching 0 K. The value 1.6 is near the predicted value of 1.5 for 3D critical fluctuations with dynamic exponent \(z = 2 \) [11].

Transport data for a polycrystalline sample with \(x = 0.004 < x_c \) is shown in Fig. 3 for ambient pressure \((T_c = 0.25 \) K) and 10 kbar. Data for the suppression of \(T_c \) will be presented elsewhere, but \(T_c \) approaches 0 K at

*Corresponding author. Fax: + 1-617-552-8478.
E-mail address: grafm@bc.edu (M.J. Graf)

0921-4526/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0921-4526(99)02553-3
Fig. 1. U(Pt$_{1-x}$ Pd$_x$)$_3$ phase diagram, $x \leq 0.02$ (open and solid symbols for single and polycrystals, respectively).

Fig. 2. Power-law exponent versus Pd concentration.

Fig. 3. Pressure dependence of the resistivity, $x = 0.004$.

Acknowledgements

Work was supported by Research Corporation (RA0246), NATO (CG960116) and by the Dutch funding agency FOM; the NHMFL is sponsored by the NSF and the State of Florida.

References