ELECTRON LOCALIZATION IN Pb_{1-x}Sn_{x}Te(In) IN HIGH MAGNETIC FIELD

D. R. Khokhlov, I. I. Ivanchik,

Physics Department, Moscow State University, Moscow 119899, Russia

A. de Visser,

Van der Waals - Zeeman Laboratory, University of Amsterdam, Valckenierstraat 65-67, 1018 XE Amsterdam, The Netherlands,

and

A. V. Nikorich,

Institute of Applied Physics of Moldavian Academy of Sciences, Grosula 5, Kishinev, Moldova.

Received 6 April 1992 by L. V. Keldysh.

We report on the high-field (H < 400 kOe) magnetoresistance of initially dielectric Pb_{0.75}Sn_{0.25}Te(In). The data taken at (1.4 - 4.2) K show a magnetoresistance increase in time (localization) for a relatively low concentration of nonequilibrium electrons. The characteristic time for localization \(\tau \) depends exponentially on \(H \) and linearly on \(T \). The possible origins of the effect are discussed.

1. Introduction.

Lead-tin tellurides doped with indium received a lot of attention during recent years because of their promising candidature for photodetection in the far infrared. The nontrivial effects observed in these materials - Fermi level pinning \(^1\) and persistent photoconductivity \(^2\) - originate from unusual features of impurity states in Pb_{1-x}Sn_{x}Te(In) \(^3\). The low-field galvanomagnetic properties of Pb_{1-x}Sn_{x}Te(In) have been extensively studied \(^4\), and some new interesting effects, such as a giant negative magnetoresistance \(^5\), have been reported.

In this paper we report on high-field (H < 400 kOe) magnetoresistance measurements of Pb_{0.75}Sn_{0.25}Te(In) in the photomemory regime for different levels of initial photoexcitation in the temperature interval 1.4 K \(\leq T \leq 4.2 \) K.

2. Experimental.

All Pb_{0.75}Sn_{0.25}Te(In) samples we investigated were single crystals grown by the modified Bridgman technique. The tin content of an alloy \(x = 0.25 \) was chosen in order to provide Fermi level pinning within the bandgap, so initially the samples are in the dielectric state \(^5\). The indium concentration \(N_{[\text{IN}]p} \) varied from 0.2 to 0.5 at.\%.

External infrared illumination allowed to change smoothly the free electron concentration \(^2\).

The samples were mounted into the special chamber that was cooled by liquid helium and screened completely from the background radiation. An internal thermal source of infrared radiation provided a controlled change of free carrier concentration.

The measurements have been performed in the high-field facility of the University of Amsterdam. The maximum field that can be attained is 400 kOe. Different field profiles can be programmed and the pulse duration is of the order of 1 s.

3. Results.

The temperature dependence of the resistivity of all the Pb_{0.75}Sn_{0.25}Te(In) samples has the well-known characteristics \(^5\): there are two pronounced activation parts, one of them \((170 - 300) \text{ K}\) corresponds to the thermal electron-hole generation via the bandgap, another one \((15 - 50) \text{ K}\) corresponds to the activation from impurity centers. For the alloys with \(N_{[\text{IN}]p} < 0.4 \) at.\% lowering of the temperature below 15 K results in thermal "freezing" of electrons in the conduction band. The amount of "frozen"
Fig. 1. Magnetoresistance (solid lines) and magnetic field (dashed lines) versus time for Pb$_{0.75}$Sn$_{0.25}$Te + 0.2 at% In at $T = 4.2$ K. $P_0 = 25$ Ohm cm. The arrows indicate the moment of magnetic field stabilization to the different $\rho(H)$ curves.

Electrons depend on N_{In} and on the cooling rate. For the sample with $N_{\text{In}} = 0.5$ at% the "darkness" free electron concentration does not exceed 10^6 cm$^{-3}$ at $T = 4.2$ K. The effects we observe do not depend on whether the nonequilibrium electrons are photogenerated or "frozen".

Some typical magnetoresistance and magnetic field versus time profiles are shown in fig. 1. It was found that if P_0 is high enough, the resistivity of the sample increases exponentially in time after the moment t_0 of magnetic field stabilization:

$$\rho = \rho(t = t_0) + \Delta \rho \left[1 - \exp\left(-\frac{t - t_0}{\tau}\right)\right]$$ (1)

Our earlier measurements have shown that this resistivity rise is due to the decrease of free electron concentration, i.e. to the localization effect.

For every fixed P_0 the characteristic time τ depends exponentially on the magnetic field applied (fig. 2, 3):

$$\tau = \tau(H = 0) \exp \left(\frac{H}{H_0}\right)$$ (2)

The characteristic field H_0 does not depend on temperature, or on the degree of the photoexcitation (i.e. the P_0 value) for magnetic field exceeding 80

Fig. 2. Dependence of the characteristic time τ on magnetic field H for Pb$_{0.75}$Sn$_{0.25}$Te + 0.4 at% In at $T = 4.2$ K for the different degrees of photoexcitation. Figures near the lines - P_0 in Ohm cm.

Fig. 3. Dependence of the characteristic time τ on magnetic field H for Pb$_{0.75}$Sn$_{0.25}$Te + 0.4 at% In at the different temperatures for $P_0(T = 4.2$ K) = 2.3 Ohm cm. Figures near the lines - T in K.

Fig. 4. Field variation of the characteristic time τ at $T = 4.2$ K for samples with values of N_{In} of 0.2 at% (+), 0.4 at% (-), and 0.5 at% (*). Figures near the lines - P_0 in Ohm cm.
Vol. 82, No. 10
ELECTRON LOCALIZATION IN Pb$_{1-x}$Sn$_x$Te(In)

kOe (fig. 2.3). H_0 depends only slightly on N_{In} (fig. 4). It should be noted, however, that the smaller is N_{In}, the lower photoexcitation (higher P_0) is needed to reach the same τ in comparable magnetic fields (fig. 4). In relatively low fields ($H < 80$ kOe) the $\tau(H)$ dependence becomes nonexponential (fig. 2). This nonexponential behavior is only observed for very small degree of photoexcitation.

Raising of the free electron concentration leads to the shift of a region, where the effect is observed, to higher magnetic fields (fig. 2). If P_0 is small enough, the resistivity relaxation is not detected for the highest $H = 380$ kOe and $\partial H/\partial t = 800$ kOe/s that we have used in our experiment ($\tau < 10^{-2}$s).

The temperature dependence of τ at fixed H is close to be linear (fig. 5)

$$\tau = \tau_0 (1 - T/T_0) \exp(H/H_0)$$

where τ_0 does not depend on the magnetic field applied, and is defined
only by the nonequilibrium electron concentration n. τ_0 drops with increasing n.

The dataset we have does not allow to determine precisely $\tau_0(N_{\text{In}})$. We can only conclude that $\tau_0 \sim 10^{-2}$ s.

4. Discussion.

Generally, the effect of localization in magnetic field might originate from a range of different mechanisms.

1) Localization on the deep impurity level E_0 in magnetic field.

If E_0 is initially empty, lies higher than the quasiFermi level E_F and shifts down in energy in magnetic field, one could observe a transition of electrons from the conduction band to the impurity level when E_0 crosses E_F. However in this case for a higher degree of photoexcitation E_0 should approach E_F, so the localization should shift to lower fields. Experimentally the opposite is observed.

ii) Localization due to the energy band modulation (EBM).

The EBM amplitude $E_{\text{EBM}} \sim (1-2)$ meV in Pb$_{1-x}$Sn$_x$Te(In) has been estimated in [8] from the analysis of the Shubnikov - de Haas oscillation data. The shift of the localization region to higher fields for higher degree of photoexcitation is the most strong argument providing evidence for such a connection. Indeed, the nonequilibrium free carriers screen the inhomogeneities, and therefore E_{EBM} decreases as P_0 drops. Furthermore, lowering of the indium content in the sample should lead to a decrease of E_{EBM}. If the value of τ is defined by E_{EBM}, then for a lower degree of photoexcitation (higher P_0) is needed to reach the same τ in comparable magnetic fields. This effect is observed experimentally (fig. 4).

Let us consider now, how the EBM can lead to the localization effect. If we assume that for a relatively low degree of photoexcitation the sample conductivity is defined by the activation from E_F to the percolation level E_p, then the increase of the sample resistance may result from the activation energy rising in magnetic field. The latter is a consequence of the increase of the conduction band density of states. If the localization is an activation process, then

$$\tau = \tau_0 \exp[(E_p - E_F)/kT]$$

If $(E_p - E_F)$ in a first approximation depends linearly on H: $(E_p - E_F) = (E_p - E_F)_0 + \partial H$, then comparing (3) and (4), one obtains

$$H_0 = kT/\sigma$$

i.e. H_0 should be proportional to the sample temperature. We see however that H_0 does not depend on T (fig. 3). This means that the localization is not the activation process.

One could suppose that the conductivity is defined by the tunnelling through the drift barriers. This might explain the absence of the strong temperature dependence of H_0 because the barrier thickness does not depend on T. In the framework of this hypothesis it is natural to suppose that the parameter τ_0 is just the measure of E_{EBM}. Indeed, first of all, τ_0 becomes smaller for the higher
One cannot exclude that the localization of the nonequilibrium electrons in magnetic field has yet another microscopic nature. First of all, the parameter H_0 does not depend on any external factor. Secondly, the value of $T_0 \sim 10^{-2}$ s is close to the characteristic time of the initial fast photoconductivity drop after switching-off the radiation source. Usually this process is associated with a recombination to the metastable impurity states that reveal themselves in a range of other effects 4,11,12. However the motion of this metastable impurity level in the low magnetic field $H < 0.5$ T seems to lead in contrary to the delocalization of electrons resulting in a giant negative magnetoresistance effect 4.

5. Summary.

In summary, we have observed localization effect in high magnetic fields in $Pb_{1-x}Sn_xTe(In)$ and discussed its origin in terms of i) localization on deep impurity level, ii) energy band modulation, iii) magnetic freeze-out on shallow level. No one of these origins seem to offer a satisfactory explanation, and more experimental and especially theoretical efforts are needed to elucidate this discrepancy.

Acknowledgments - We are grateful to Prof. A.V. Dmitriev from the Moscow State University and to Dr. P.Frins from the University of Amsterdam for helpful discussions.

References.