Magnetic Quantum Critical Point and Superconductivity in UPt$_3$ Doped with Pd

Presentation by A. de Visser

at the ESF/FERLIN workshop

"Quantitative comparison of Fermi-liquid instabilities at magnetic-nonmagnetic transitions in terms of spin-fluctuation models and beyond"

5 - 7 October 2000
Il Ciocco, Castelvecchio Pascoli, Italy

(http://www.esf.org/physical/pp/FERLIN/ferlinf.htm)
Magnetic Quantum Critical Point and Superconductivity in UPt$_3$ Doped with Pd

A. de Visser and P. Estrela
Van der Waals-Zeeman Institute, University of Amsterdam

M.J. Graf
Department of Physics, Boston College

A. Amato and C. Baines
Paul Scherrer Institute, Villigen

D. Andreica, F.N. Gygax and A. Schenck
Institute for Particle Physics, ETH Zürich

Content

1. Introduction U(Pt,Pd)$_3$

2. Tranverse-field μSR experiments

3. Magnetic quantum-critical point

4. Superconductivity mediated by ferromagnetic spin-fluctuations

5. Conclusions
1. Introduction $U(Pt,Pd)_3$

Keizer et al. (PRB 1999)

- Small-moment antiferromagnetism for $x \leq 0.01$

 $m \sim 0.01 - 0.05 \mu_B/U$-atom and $T_N \sim 6$ K

- Large-moment antiferromagnetism for $0.01 \leq x \leq 0.08$

 Optimal doping for $x = 0.05$: $m \sim 0.6 \mu_B/U$-atom and $T_N \sim 6$ K

- Critical concentration for suppression of superconductivity

 $x_{c,sc} \approx 0.006$
Small-moment antiferromagnetism

Keizer et al. (PRB 1999)

- Quasi-linear increase of the neutron intensity measured at $Q = (0.5, 1, 0)$; doubling of the nuclear unit cell along a^*

- For $x = 0.000 \rightarrow m = 0.018 \pm 0.002 \mu B/U_{\text{atom}}$
 For $x = 0.005 \rightarrow m = 0.048 \pm 0.008 \mu B/U_{\text{atom}}$

- T_N does not change with Pd content!

- Only observed by neutron-diffraction and magnetic x-ray scattering, not by standard bulk probes, NMR and μSR → moment fluctuates at a rate >10 MHz
Large-moment antiferromagnetism

Keizer et al. (PRB 1999)

- Rather conventional increase of the neutron intensity measured at \(Q=(0.5, 1, 0) \);
 identical magnetic structure as SMAF

- \(T_N \) is maximum for \(x = 0.05 \), with \(m = 0.62 \pm 0.05 \, \mu_B/\text{U-atom} \)

- \(T_N(x) \) represents a Doniach-like phase diagram

- Also observable in standard bulk probes NMR and \(\mu \text{SR} \)
Unconventional superconductivity

Keizer et al. (1999)

- Splitting ΔT_c increases with increasing Pd content
- "A phase" survives for $x = 0.004$
- From resistivity experiments $T_c \rightarrow 0$ for $x_{c,sc} \approx 0.006$
- ΔT_c correlates with m^2 which yields support for SMAF as symmetry breaking field
2. Transverse-field μSR experiments

- Experiments carried out at the LTF at the πM3 beam line at the Paul Scherrer Institute
- Polycrystalline samples with 0.007 ≤ x ≲ 0.009
- When positive muons come to rest in the sample they start to precess around the local field, B_{loc}, with a precession frequency
 \[\nu_{\mu} = \gamma_{\mu} B_{\text{loc}} \]
 \(\gamma_{\mu}/2\pi = 135.5 \text{ MHz/T} \) is the muon gyromagnetic ratio
- The internal dipolar magnetic field distribution in general leads to de-phasing of the precession frequency and consequently the signal is damped
- At each temperature we measure the damping rate in an applied field of 100 G \(\nu_{\mu} = 1.355 \text{ MHz} \) by fitting the depolarization of the muon as function of time \(P(t) \)
- The variation of the damping rate with temperature may yield information about emerging sources of magnetism
Fitting procedure

1. Fit to Gaussian damped depolarization function:

\[P_G(t) = A_G \cos(\omega t) \exp(-\Delta^2 t^2/2) \]

\(A_G = \) asymmetry, \(\omega = 2\pi \nu \mu \), \(\Delta = \) Gaussian damping rate
At the highest \(T \): \(\Delta \approx 0.06 \mu s^{-1} \)
→ depolarization due to Pt nuclear moments

2. Fit to damped-Gauss function with \(\Delta \approx 0.06 \mu s^{-1} \)

\[P_{DG}(t) = A_{DG} \cos(\omega t) \exp(-\lambda_E t - \Delta^2 t^2/2) \]

\(A_{DG} = \) asymmetry, \(\lambda_E = \) exponential damping rate

3. We determine \(T_N \) by fitting \(\lambda_E = \lambda_{BG} + \lambda_{LMAF} \)

\(\lambda_{BG} = \) background signal
\(\lambda_{LMAF} \sim -\ln(T/T_N) \) for \(T<T_N \) is due to LMAF
\(\lambda_{LMAF} = 0 \) for \(T>T_N \)
Gaussian damped depolarization rate: $\Delta(T)$

$P_G(t) = A_G \cos(\omega t) \exp(-\Delta^2 t^2/2)$

- At highest T depolarization due to Pt nuclear moments: $\Delta = \sim 0.06$ μs$^{-1}$

- At lower T increase of Δ signals additional source of internal dipolar fields
Exponential damping rate $\lambda_E(T)$

from damped Gauss fit

de Visser et al., PRL 85 (2000) 3005

\[
P_{DG}(t) = A_{DG}\cos(\omega t)\exp(-\lambda_E t - \Delta^2 t^2/2)
\]

with $\Delta \approx 0.06 \, \mu s^{-1}$

• T_N is determined by fitting $\lambda_E = \lambda_{BG} + \lambda_{LMAF}$

 $\lambda_{BG} = \text{background signal}$

 $\lambda_{LMAF} \sim -\ln(T/T_N)$ for $T<T_N$

 $\lambda_{LMAF} = 0$ for $T>T_N$

• T_N drops rapidly with decreasing x:

 For $x=0.009$ $T_N = 1.23\pm0.10$ K

 For $x=0.008$ $T_N = 0.78\pm0.10$ K

 For $x=0.007$ $T_N = 0.45\pm0.15$ K
3. Magnetic quantum critical point

de Visser et al., PRL 85 (2000) 3005

- In $\text{U(Pt}_{1-x}\text{Pd}_x)\text{$_3$}$ a magnetic quantum critical point is found at $x_{c,\text{at}} \sim 0.006$

- LMAF rather than SMAF represents the antiferromagnetic instability
• The critical concentration for the emergence of LMAF coincides with the critical concentration for the suppression of SC

\[x_{c,af} = x_{c,sc} \approx 0.006 \]

Notice: For \(x = 0.005 \) absence of LMAF has been demonstrated by zero-field \(\mu \)SR on a polycrystal (\(T > 0.04 \) K) and by neutron-diffraction on a single crystal (\(T > 0.1 \) K).
4. Superconductivity mediated by ferromagnetic spin fluctuations

- Long-standing controversy regarding the superconducting pairing mechanism in UPt$_3$:

"Superconducting order parameter has odd parity while the dominant spin fluctuations are of antiferromagnetic, rather than ferromagnetic, nature".

 Miyake et al., PRB 34 (1986) 6554

- Odd parity:
 polarised neutron diffraction: Stassis et al., PRB 34 (1986) 4382
 NMR: Tou et al., PRL 77 (1996) 1374
 impurity studies: Dalichaouch et al. PRL 75 (1996) 1374,
 Duijn et al., Physica B 223&224 (1996) 44

- AF fluctuations:
 susceptibility: Frings et al., JMMM 31-34 (1983) 240
 neutron scattering: Aeppli et al., PRL 60 (1988) 615

- Our new results show that upon Pd doping superconductivity is suppressed and static antiferromagnetic order emerges

"The antiferromagnetic QCP coincides with the critical point for superconductivity"
• In order to solve the controversy we propose:

"Pd doping leads to a shift of spectral weight from ferromagnetic to antiferromagnetic fluctuations"

Ferromagnetic spin fluctuations mediate superconductivity rather than antiferromagnetic fluctuations

• Evidence for ferromagnetic fluctuations in pure UPt$_3$
 - $T^3\ln T$ term in specific heat: Stewart et al., PRL 52 (1984) 679
 - inelastic neutron-scattering: Goldman et al., PRB 36 (1987) 8523

• In order to test the idea of shift of spectral weight:
 - inelastic neutron-scattering experiments
 - (magneto)transport experiments around the QCP to probe the non-Fermi liquid power laws:
 AF QCP $\alpha=3/2$; FM QCP $\alpha=5/3$

Graf et al. (Physica B 2000)

![Graph showing the relationship between Pd concentration and exponent α](image)
SC at magnetic QCP in related materials

$U(Pt_{1-x}Pd_x)_3$
odd-parity superconductivity
mediated by FM fluctuations
suppressed at the AF QCP

Mathur et al. (Nature 1998)

CePd$_2$Si$_2$ (and CeIn$_3$)
even-parity superconductivity
mediated by AF fluctuations at
the AF QCP

Saxena et al. (Nature 2000)

UGe_2
p-wave superconductivity
mediated by FM fluctuations
5. Conclusions

- The U(Pt$_{1-x}$Pd$_x$)$_3$ system has an antiferromagnetic quantum critical point at $x_{c,af} \approx 0.006$

- LMAF rather than SMAF represents the antiferromagnetic instability

- The antiferromagnetic QCP coincides with the critical point for superconductivity: $x_{c,af} = x_{c,sc} \approx 0.006$

- Upon doping UPt$_3$ with Pd ferromagnetic fluctuations weaken and no longer exist for $x > 0.006$, where AF order sets in

- Ferromagnetic spin fluctuations mediate odd-parity superconductivity rather than antiferromagnetic fluctuations